# AD=41402 # INSTRUCTION MANUAL # Multi Function Weighing Indicator WM: PD4000243 This is a hazard alert mark. This mark informs you about the operation of the product. Note This manual is subject to change without notice at any time to improve the product. No part of this manual may be photocopied, reproduced, or translated into another language without the prior written consent of the A&D Company. Product specifications are subject to change without any obligation on the part of the manufacture. Copyright@2001 A&D Company, Limited # Contents | 1. | _ | compliance | | |----|--------|-------------------------------------------------|----| | | 1.1.1. | Compliance with FCC rules | 4 | | | 1.1.2. | Compliance with European Directive | 4 | | | | | | | 2. | | Outline and Features | | | | 2.1. | Precaution | 6 | | | 2.2. | Front Panel | 7 | | | 2.2.1. | Keys | 7 | | | 2.2.2. | Symbols | 8 | | | 2.3. | Rear Panel | | | | | | | | 3. | | nstallation | | | | 3.1. | Mounting Indicator | | | | 3.2. | Connecting Loadcell Cable | | | | 3.2.1. | Verifying Loadcell Output and Input Sensitivity | 13 | | | 3.3. | Wiring Power Cord | 14 | | | 3.4. | Installing Options | 15 | | | | | | | 4. | В | asic Operation | 16 | | | 4.1. | Key Operation Examples | 16 | | | 4.1.1. | Standby Mode | 16 | | | 4.1.2. | Cursor Operation | | | | 4.1.3. | Inputting Characters | 16 | | | 4.1.4. | The Way of Calling a Code | 17 | | | 4.1.5. | The Way of Entering a Correction Mode | | | | 4.1.6. | The Way of Entering Menu | | | | 4.2. | Status Chart (Mode map) | | | | | ( ( | | | 5. | С | alibration | 20 | | | 5.1. | Actual Load Calibration (using Mass) | | | | 5.2. | Digital Span (Calibration without Mass) | | | | 5.3. | Gravity Acceleration Correction | | | | 5.3.1. | Gravity Acceleration Reference | | | | 5.4. | Calibration Error | | | | 0.1. | | | | 6. | А | pplications | 25 | | | 6.1. | Hopper Scale with Material Code | | | | 6.1.1. | Definition of Material Code | | | | 6.1.2. | Recalling Material Code | | | | 6.1.3. | Editing Principle Parameters of Material Code | | | | 6.1.4. | Referring next Material Code | | | | 6.1.5. | Editing Full Parameters of Material Code | 27 | | | 6.2. | Simple Hopper Scale with Recipe Code | | | | 6.2.1. | Definition of Recipe Code (Formal Function) | | | | 6.2.1. | Using a Recipe Code | | | | _ | | | | | 6.2.3. | Construction of Recipe Code | | | | 6.2.4. | Recalling a Recipe Code | | | | 6.2.5. | Arranging Material Code in Recipe Code | | | | 6.2.6. | Editing Full Parameters of Recipe Code | 32 | | | 6.3. | System Design of Hopper Scale | 34 | |----|---------|-------------------------------------------------|----| | | 6.3.1. | Operation and I/O Design | | | | 6.3.2. | Design Example | | | | 0.0.2. | | | | 7. | W | eighing Mode | 35 | | | 7.1.1. | Contents of Batch Weighing Mode | | | | 7.2. | Batch Weighing Mode | | | | 7.2.1. | Selection of Batch Weighing | | | | 7.3. | Sequential Weighing Mode | | | | 7.3.1. | Normal Batching of Sequential Weighing | | | | 7.3.2. | Loss-in Weight of Sequential Mode | 41 | | | 7.3.3. | Compensation Sequence | | | | 7.3.4. | Entrance Sequence | | | | 7.3.5. | Discharge Sequence | 47 | | | 7.3.6. | Plain Recipe Sequence | | | | 7.3.7. | Automatic Selection of Supplying Mat | | | | 7.3.8. | Nozzle Control Sequence (vacuum cleaner) | 52 | | | 7.3.9. | Mixture Sequence | | | | 7.3.10. | Safety Check Function | 55 | | | 7.3.11. | Pause and Emergency Stop | | | | 7.3.12. | Restart Sequences from Pause | 56 | | | 7.3.13. | Automatic Free Fall Compensation | | | | 7.3.14. | Real Time Free Fall Compensation | | | | 7.4. | Customer Programmed Control (Comparison Output) | 59 | | | 7.4.1. | Normal Batching of Comparison Function | | | | 7.4.2. | Loss-in Weight of Comparison Function | | | | 7.5. | Other Functions | | | | 7.5.1. | Re-Zero Operation | 64 | | | 7.5.2. | Zero Tracking Function | 64 | | | 7.5.3. | Tare | 65 | | | 7.5.4. | Preset Tare (Fixed Tare Function) | 65 | | | 7.5.5. | Customizing Function Key (Key Design) | 65 | | | 7.5.6. | Customizing Sub Display | 66 | | | 7.5.7. | Graphic Display | 67 | | | 7.5.8. | Accumulation Operation | 68 | | | 7.5.9. | Undoing Accumulation Operation | 68 | | | 7.5.10. | Clearing (Deleting) Accumulation Data | 68 | | | 7.5.11. | Error Message and Alarm | | | | 7.5.12. | Graphic Status Indicator | 71 | | | 7.5.13. | Memory Backup | 71 | | | | | | | 8. | | terface | | | | 8.1. | Control I/O Function | | | | 8.1.1. | Interface circuit | | | | 8.1.2. | Timing Chart | | | | 8.2. | Built-in RS-485 Interface | | | | 8.2.1. | Connection | | | | 8.2.2. | Settings of Parameters | | | | 8.2.3. | Timing Chart | | | | 8.2.4. | General Data Format | | | | 8.2.5. | A&D Data Format | | | | 8.2.6. | Address | | | | 827 | Command List | 70 | | 8.3. | Built-in Current Loop Output | 82 | |---------|------------------------------------------|-----| | 8.3.1. | Connection | 82 | | 8.3.2. | Communication Modes | | | 8.3.3. | Data Format | 83 | | 8.4. | BCD Output of Option, OP-01 | | | 8.5. | Relay Output of Option, OP-02 | | | 8.6. | RS-422/485 Interface of Option, OP-03 | | | 8.7. | RS-232C Interface of Option, OP-04 | | | 8.8. | Parallel I/O of Option, OP-05 | | | 8.9. | Analog Output of Option, OP-07 | 93 | | 0 14 | . , | 0.4 | | | aintenance | | | 9.1.1. | Basic Operation | | | 9.2. | Monitor Mode | | | 9.2.1. | Monitoring Control I/O Function | | | 9.2.2. | Monitoring Built-in RS-485 Interface | | | 9.2.3. | Monitoring Built-in Current Loop Output | | | 9.2.4. | Monitoring A/D Converter | | | 9.2.5. | Monitoring BCD Output of OP-01 | | | 9.2.6. | Monitoring Relay Output of OP-02 | | | 9.2.7. | Monitoring RS-422/485 Interface of OP-03 | | | 9.2.8. | Monitoring RS-232C Interface of OP-04 | | | 9.2.9. | Monitoring Parallel I/O of OP-05 | | | 9.2.10. | Monitoring Analog Output of OP-07 | | | 9.3. | Test Mode | 97 | | 9.3.1. | Testing Control I/O Function | | | 9.3.2. | Testing Built-in RS-485 Interface | | | 9.3.3. | Testing Built-in Current Loop Output | | | 9.3.4. | Testing A/D Converter | | | 9.3.5. | Testing BCD Output of OP-01 | | | 9.3.6. | Testing Relay Output of OP-02 | 98 | | 9.3.7. | Testing RS-422/485 Interface of OP-03 | 98 | | 9.3.8. | Testing RS-232C Interface of OP-04 | | | 9.3.9. | Testing Parallel I/O of OP-05 | | | 9.3.10. | Testing Analog Output of OP-07 | | | 9.4. | Initializing Parameters | | | 9.5. | Remote Operation | 102 | | 10. Fu | unction List | 103 | | 10.1.1. | Operation Keys | | | 10.1.1. | Outline of the Function List | | | 10.1.2. | Referring Parameters | | | 10.2. | Parameter Settings | | | 10.4. | Parameter List | | | 10.4. | i didiffeter List | 100 | | 11. Sr | pecifications | 132 | | 11.1. | Dimensions | | | 11.2. | Accessories | | | | | | | | eferences | | | 12.1. | Abbreviation | | | 12.2. | ASCII Code for AD-4402 | | | 12.3. | Index | 138 | # **\*** ## 1. Compliance ## 1.1.1. Compliance with FCC rules Please note that this equipment generates, uses and can radiate radio frequency energy. This equipment has been tested and has been found to comply with the limits of a Class a computing device pursuant to Subpart J of Part 15 of FCC rules. These rules are designed to provide reasonable protection against interference when this equipment is operated in a commercial environment. If this unit is operated in a residential area it may cause some interference and under these circumstances the user would be required to take, at his own expense, whatever measures are necessary to eliminate the interference. (FCC = Federal Communications Commission in the U.S.A.) ## 1.1.2. Compliance with European Directive This appliance complies with the statutory EMC (Electromagnetic Compatibility) directive 89/336/EEC and the Low Voltage Directive 73/23/EEC for safety of electrical equipment designed for certain voltages. Note: The displayed value may be adversely affected under extreme electromagnetic influences. Page 4 AD-4402 ## 2. Outline and Features □ The AD-4402 is the multi-function weighing indicator for batch weighing and filling weighing. This indicator has control I/O for weighing sequence and options. #### Large display This indicator has blue vacuum fluorescent display (VFD). The character height of the main display is 18 mm. Current weighing data, material names, comparison references and accumulation data are displayed in the same time. Material names and recipe #### Operation guidance Message that assists current operation are displayed in the front panel, anyone could operate the indicator without instruction manuals. #### Full weighing sequences The AD-4402 can combine plural materials and the plain mixture function is equipped. Filling nozzle and agitation sequence is equipped. Using the forecast control function, the flow control can be performed that is equivalent to A/D conversion of 1000 times per second. #### RS-485 interface 32 indicators can be connected to a programmable controller or a personal computer. These protocols are according to public formats. #### Options There are built-in options of AC 250 V direct drive relay, serial interface, parallel interface, analog output and etc. There are built-in options of CC-Link, DeviceNet, PROFIBUS. There are three expansion slots to install options. #### Check mode during operation The monitor mode can confirm system situation during operation. The test mode can test Input / Output interface. Even if there is not monitor instrument, interface can be confirmed. #### Recipes and raw material data stored in the indicator The recipe is described a combination of material codes and weights. The material code is described the weighing sequence parameters for a raw material. #### Water-resistant panel The classification code of the front panel is equivalent to IP-65 of IEC 529 using accessory rubber packing. The "IP-65" code is explained as follows: International Protection. IP: Against ingress of solid foreign objects. 6: Dust-tight. No ingress of dust. Against ingress of water with harmful effects. 5: Protected against water jets (no powerful jets). Water projected in jets against the enclosure from any direction shall have no harmful effects. ## 2.1. Precaution Befor any use, confirm the following articles for the safty operation. #### Grounding the indicator Ground the indicator certainly. The earth terminal ① is the rear panel. Separate this earth line from other ground line like a motor, inverter or a power source. Unless the indicator is grounded, it may cause to receive an electric shock, be happen operation error or catch fire #### Use adaptable power cord Confirm the AC voltage and current of the power cord. If the voltage range of cord is lower than power line voltage, it may cause of a leak or catching fire. Use compression terminals to connect the power cord to the terminal of the rear panel. #### Fuse The fuse is installed to prevent the indicator from catching fire. The indicator is equipped many safety circuits. Therefore, the fuse is not broken in normal operation. If the fuse is broken, do not replace the fuse and contact your local or A&D dealer. This trouble may cause of an electric discharge of thunder. #### Splashing water The indicator is not water-resistant. When the indicator is mounted to panel with accessory rubber, the front panel is equivalent to IP-65. #### Flammability gas Do not install the indicator in any flammable gas. #### Radiation of the indicator Space out instruments to radiate heat sufficiently. #### Removing the cover Remove the power cord terminals in the side of the power source before removing the cover to avoid receiving an electric shock. Do not touch the internal circuit within 10 seconds after turning off the indicator because of receiving an electric shock. Page 6 AD-4402 ## 2.2. Front Panel #### 2.2.1. **Keys** CODE RECALL CODE SET Pressing this key, the key works as the **F1** key. F1/F3 Pressing the **SHIFT** key and this key, the key works as the **F3** key. Pressing this key, the key works as the **F2** key. F2 / F4 Pressing the **SHIFT** key and this key, the key works as the **F4** key. The key to select a function of the key. **SHIFT** The key to open the material code or recipe code. Pressing the **SHIFT** key and this key, the key works as the material code edit kev. Pressing the **ENTER** key and this key, the key works as the recipe code edit key. The key to select alphabetical keys, upper keys, lower keys or numerical keys. ABC to YZ Alphanumeric keys. ESC OFF ENTER NET/B/G NET / GROSS →T← **TARE** **→**()← ZERO STABLE **GROSS** The escape key. Pressing and holding the key above three seconds in normal weighing mode, the display is turned off (standby mode). The **ESC** key is used to undo the last key and to return to the last mode. The **ENTER** key for parameter settings. The key to be turned on the display. Pressing the + key and this key, the key works as the menu key. The key to select net or gross The tare key. The key is displayed the net value that subtracts tare weight from a current weighing. The zero key to zero current weighing display. #### 2.2.2. **Symbols** Main display Gross or net is displayed. Sub display Code numbers, operation guidance, graph, comparison parameter and other are displayed selectively. Unit indicator The indicator is displayed that the weighing unit is selected in the calibration mode. Refer to section "5. Calibration". Status indicator The current weighing status is displayed. The classification number is displayed, when occurred an error or informed an alarm. Graphic status The current weighing situation is displayed with symbols. indicator Lighting the sign, the current weighing display is stable. Displaying the gross data in the main display, the sign is lighted. Page 8 AD-4402 NET Displaying the net data in the main display, the sign is lighted. TARE ENT Tare entered. Storing the net value, the sign is lighted. HOLD Fixing the main display, the sign is lighted. CZ Center of zero. When the gross weight is in the center of the zero point, the sign is lighted. ZR.ERR Zero error. Error message for zeroing the gross data of the main display. SQ.ERR The sequence error sign. A message for weighing sequence error. ALARM 1 An error sign for over load or emergency stop mode. ALARM 2 A fatal error sign. Example: The wire form loadcell is broken. Standby indicator In the standby mode, all interfaces are turned off and internal circuit works only. ▲FULL When the gross data exceeds the full limit, the sign is lighted. ▲Z. BAND The zero band sign. When the gross data is within the range of the zero band (around the zero point), the sign is lighted. ▲F.FLOW The full flow gate sign. ▲M.FLOW The medium flow gate sign. ▲D.FLOW The dribble flow gate sign. ▲FINISH The finish sign. ## 2.3. Rear Panel Page 10 AD-4402 ## 3. Installation #### **Caution** - Remove the power cord before installing the indicator and other. - Build in the option before installing the indicator. ## 3.1. Mounting Indicator - The indicator can mount on the panel using the slide rail. - □ If the accessory packing rubber is used, the front panel is equivalent to IP-65 of IEC 529. Panel Cutout size ## X ## 3.2. Connecting Loadcell Cable #### Caution - □ Share the loadcell cable from noise-generating device and these power lines beacuse loadcell signal is sensitive. - We recommend you to use the 6 wire shielded cable to prevent loss of weighing precision. - □ The loadcell cable length is shorter than 5 m, you may be use a 4 wire shielded cable with terminals 1 & 2 shorted (EXC+ & SEN+ shorted) and terminals 3 & 4 shorted (EXC- & SEN- shorted). ## Adaptable Compression Terminal Parts Use the adaptable compression terminal parts to the cables ## Loadcell Output Adjustment for Zero Calibration (Zero Point) Loadcell - □ When a message "CERR2" is displayed, zero point of zero calibration is too large. - □ When a message "CERR3" is displayed, zero point of zero calibration is too small. - $\Box$ Use the resister more than 50 kΩ with low (good) temperature coefficient, when adding a resister to adjust the loadcell output to indicator terminals. Negative loadcell input- In Case of Too Small Output Page 12 AD-4402 ## 3.2.1. Verifying Loadcell Output and Input Sensitivity The input sensitivity of the indicator is $0.3\mu V/division$ or more. Adapt to the following inequality, when you design a weighing instrument using the indicator and loadcell(s). #### Caution - A change in input voltage sensitivity is equivalent to a one division change of the display. Select as large an input voltage sensitivity voltage as possible so that the weighing interval becomes stable. - Consider the leverage if a lever is used. | Weighing instrument using one loadcell. | $0.3 \le \frac{E * B * D}{A}$ | A: Rated capacity of loadcell [kg] B: Rated output [mV/V] | |------------------------------------------|-----------------------------------|--------------------------------------------------------------------------| | Weighing instrument using multi-loadcell | $0.3 \le \frac{E * B * D}{A * N}$ | D:Weighing interval [kg] E:Excitation voltage [mV] N:Number of loadcells | **Verification Example** | Design: | | | |--------------------|-------------|----------------------------------------------------| | Loadcell | N=1 | | | Rated capacity | A=750 [kg] | $\frac{5000*3*0.05}{750} = 1 \ge 0.3$ . Therefore, | | Rated output | B=3 [mV/V] | 750 – 12 0.3 . Therefore, | | Excitation voltage | E=5000 [mV] | regard the instrument as a good design. | | Weighing interval | D=0.05 [kg] | | | Weighing capacity | 300 [kg] | | ## 3.3. Wiring Power Cord #### Caution - Gorund the indicator with terminal E to avoid receiving an electric shock and an error due to discharge a static electricity. - Share the ground wire from electrical device that generats noise. - □ Do not use unstable power source. - □ Share the power cord form the moter system (as noise-generating device) to avoid operation error. - □ The power source can use AC 85V to AC 250V with 50 Hz or 60 Hz. Adaptable Compression Terminal Parts Page 14 AD-4402 ## $\prec$ ## 3.4. Installing Options #### Caution - Remove the power cord before operation to install the option. - Do not touch an inside parts within ten seconds after removing the power cord because you may receive an electric shock. - □ Do not forget to tighten the screw. If the screw is not tightened, it may cause short circuit or an error due to noise. - □ Three option boards can install in the slots. - □ Initialize the RAM data in accordance with section 9.4. Initializing Parameters. ## 4. Basic Operation ## 4.1. Key Operation Examples This section is described the way of key operation. ## 4.1.1. Standby Mode **OFF** Press and hold the **OFF** key above three seconds in the weighing mode. Then the indicator enters the standby mode and displays standby indicator. In the standby mode, All interface is turned off and internal circuit works only. **ON** The **ON** key is used to turn on the indicator. ## 4.1.2. Cursor Operation There is the cursor on a segment (an item) that is turned on and off. SHIFT + Press and hold the SHIFT key and press the Press the move the cursor backward. **ENTER** The **ENTER** key is used to enter the selected item. The **ESC** key is used to return to the last mode and to undo the last key operation. ## 4.1.3. Inputting Characters The character can be input in a current segment (an item) in adaptable mode. A/a The A/a key is used to change numerical key, upper keys, lower keys and alphabetical key. **Alphanumerical** The **alphanumerical** keys and the **ENTER** key is used to enter the parameters and to select a code number directly. The ENTER key is used to specify the alphanumerical data. **ESC** The **ESC** key is used to undo the last key operation and to return to the last mode. Page 16 AD-4402 ## 4.1.4. The Way of Calling a Code #### In Case of a Material Code: Step 1 Suppose that is set the function parameter $[5^{qF} - B]$ to [B]. Step 2 Press the **CODE RECALL** key in weighing mode. Step 3 Set the number of a material code with the following keys: **†** The **‡** key is used to increase the code number. SHIFT + → Press and hold the SHIFT key and press the → key is used to decrease the code number. Numerical The numerical keys and the ENTER key is used to select a code number directly and to enter the parameters. **ENTER** The **ENTER** key is used to specify the number. **ESC** The **ESC** key is used to undo the last key and to return to the last mode. #### In Case of a Recipe Code: Step 1 Suppose that is set the function parameter [59F - 8] to [7] or [7]. Step 2 Press the **CODE RECALL** key in weighing mode. Step 3 Set the number of a recipe code with the following keys: **†**, SHIFT + **†**, Numerical, ENTER, ESC keys ## 4.1.5. The Way of Entering a Correction Mode #### In Case of a Material Code: - Step 1 Press and hold the **SHIFT** key and press the **CODE RECALL** key in weighing mode. - Step 2 Select a number of a material code using the following keys: - **→**, SHIFT + **→**, Numerical, ENTER, ESC keys - Step 3 Edit some items of a material code using **numerical** keys and the **ENTER** key. - Step 4 Press the **ESC** key to return to weighing mode. #### In Case of a Recipe Code: - Step 1 Press and hold the **ENTER** key and press the **CODE RECALL** key in weighing mode. - Step 2 Select a number of a recipe code using the following keys: - **→**, SHIFT + **→**, Alphanumerical, A/a, ENTER, ESC keys - Step 3 Edit some items of a recipe code using alphanumeric keys and the **ENTER** key. - Step 4 Press the **ESC** key to return to weighing mode. ## 4.1.6. The Way of Entering Menu - Step 1 Press and hold the **ENTER** key and press the \*\* key in weighing mode. Then the first layer of menu is display. - Step 2 Use the following keys in the menu: +, SHIFT, Alphanumerical, A/a, ENTER, ESC keys - Step 3 Press the **ESC** key to return to weighing mode several times. Page 18 AD-4402 ## 4.2. Status Chart (Mode map) ## 5. Calibration - The indicator, which is connected loadcell unit, can weigh the "weight" value on the loadcell pan and display its "mass" value. The calibration function is used to adjust the weighing value (displaying value) so that the weighing system can weigh correctly. - □ There are two way of the calibration. The "actual load calibration" uses a rated mass and zero output from the loadcell. The "digital span" inputs arbitrary values (calculated by hand). These methods are selected in the calibration procedure. - □ There is a compensation function of the "gravity acceleration correction". This function is used, when a calibrated weighing system is moved to other place. - □ These calibration parameters are stored in the indicator without any power supply. #### Common Calibration Items Unit The "g", "kg" and "t" or "lb" can be selected. Decimal point The decimal point can be selected form "not used" to "four decimal places". Minimum division The minimum division of the weighing display. Weighing capacity The maximum display of the weighing display. #### Items for the "Actual Load Calibration" Common items Unit, decimal point, minimum division and weighing capacity Zero point adjustment A zero point output is used from the loadcell unit. Span adjustment Rated mass is place on the weighing pan and is weighed. The sensitivity is adjusted. This sensitivity is the same as " sensitivity " of digital span. Items for "Digital Span" Common items Unit, decimal point, minimum division and weighing capacity Zero point output The numerical data is input as zero point output of loadcell unit Rated capacity The rated capacity of the loadcell is input. The sensitivity of the loadcell is input. #### Caution - □ When the CAL switch on the A/D board is "DISABLE", any calibration can not perform. - Do not perform any calibration during a weighing sequnce operation. - Entering calibration mode during a weighing sequnce operation, the weighing sequnce operation is terminated. Calibrate the weighing system, when a weighing sequnce operation does not work - □ The accuracy of the "Digital Span (Calibration without Mass)" is 1/1000. - Do not use a "loadcell summing box", the "digital span" is performed. - It is necessary that the loadcell sensitivity is exactly known, if the "digital span" is used. Page 20 AD-4402 ## $\mathbf{X}$ ## 5.1. Actual Load Calibration (using Mass) **ESC** key If you want to return to the weighing mode during the calibration mode, press the **ESC** key anytime. And it has effect until the last displayed parameter. Example: zero adjustment only, etc. **ENTER** key When the key is pressed, the procedure stores a current parameter and proceeds to next step. - Step 1 Press and hold the **ENTER** key and press the \*\* key to display the menu in a weighing mode. - Step 2 Press the \*\* key twice to select the menu CAL. Press the ENTER key to enter the calibration mode. - Step 3 Press the **ENTER** key to enter the menu CAL. - Step 4 Select a unit using the numerical keys and press the **ENTER** key to store it. - Step 5 Select a decimal point using the numerical keys and press the **ENTER** key to store it. - Step 6 Select a minimum division using the numerical keys and press the **ENTER** key to store it. - Step 7 Select a weighing capcity using the numerical keys and press the **ENTER** key to store it. - Step 8 Perform the zero point adjustment. Place nothing on the weighing pan and press the ENTER key to store it after the STABLE indicator is displayed. Whether the STABLE indicator is displayed or not, if you want to store it, wait for ten seconds and press the ENTER key. - Step 9 Specify a total mass value to place on the weighing pan using the numerical keys and press the **ENTER** key to store it. - Step 10 Place the specifyed mass on the weighing pan and press the **ENTER** key to store it after the **STABLE** indicator is displayed. Whether the **STABLE** indicator is displayed or not, if you want to store it, wait for ten seconds and press the **ENTER** key. - Step 11 Press the **ESC** key to return the weighing mode. ## $\mathbf{X}$ ## 5.2. Digital Span (Calibration without Mass) **ESC** key If you want to return to the weighing mode during the calibration mode, press the **ESC** key anytime. And it has effect until the last displayed parameter. Example: zero adjustment only, etc. **ENTER** key When the key is pressed, the procedure stores a current parameter and proceeds to next step. - Step 1 Press and hold the **ENTER** key and press the \*\* key to display the menu in a weighing mode. - Step 2 Press the key twice to select the menu □□□. Press the ENTER key to enter the calibration mode. - Step 3 Press the **ENTER** key to enter the menu CAL. - Step 4 Select a unit using the numerical keys and press the **ENTER** key to store it. - Step 5 Select a decimal point using the numerical keys and press the **ENTER** key to store it. - Step 6 Select a minimum division using the numerical keys and press the **ENTER** key to store it. - Step 7 Select a weighing capcity using the numerical keys and press the **ENTER** key to store it. - Step 8 Press the F1 key to proceed to the digital span procedure. - Step 9 Input the zero point value using the numerical keys and press the **ENTER** key to store it. - Step 10 Input the rated capacity of a loadcell using the numerical keys and press the **ENTER** key to store it. - Step 11 Input the sensitivity of the loadcell in the unit of mV/V using the numerical keys and press the **ENTER** key to store it. - Step 12 Press the **ESC** key to return the weighing mode. **Advise** The digital span can be used for trimming of the actual load calibration using mass. Page 22 AD-4402 ## 5.3. Gravity Acceleration Correction - □ The function compensates the weighing error due to the difference of gravity acceleration. - **G1** The place where the weighing system is calibrated. - **G2** The place where the weighing system is used. **ESC** key If you want to return to the weighing mode during the calibration mode, press the **ESC** key anytime. **ENTER** key When the key is pressed, the procedure stores a current parameter and proceeds to next step. - Step 1 Press and hold the **ENTER** key and press the **+** key to display the menu in a weighing mode. - Step 2 Press the \*\* key twice to select the menu CAL. Press the ENTER key to enter the calibration mode. - Step 3 Select the menu ⊕ with the + key. Press the ENTER key to enter it. - Step 4 Input the gravity acceleration at 1 using the numerical keys and press the **ENTER** key to store it. - Step 4 Input the gravity acceleration at ©2 using the numerical keys and press the **ENTER** key to store it. - Step 5 Press the **ESC** key to return the weighing mode. ## 5.3.1. Gravity Acceleration Reference | | | , 2 | T | | , 2 | |--------------------|-------|------------------|----------------|-------|------------------| | Amsterdam | 9.813 | m/s <sup>2</sup> | Manila | 9.784 | m/s <sup>2</sup> | | Athens | 9.800 | m/s <sup>2</sup> | Melbourne | 9.800 | m/s <sup>2</sup> | | Auckland NZ | 9.799 | m/s <sup>2</sup> | Mexico City | 9.779 | m/s <sup>2</sup> | | Bangkok | 9.783 | m/s² | Milan | 9.806 | m/s² | | Birmingham | 9.813 | m/s² | New York | 9.802 | m/s² | | Brussels | 9.811 | m/s² | Oslo | 9.819 | m/s² | | Buenos Aires | 9.797 | m/s² | Ottawa | 9.806 | m/s <sup>2</sup> | | Calcutta | 9.788 | m/s <sup>2</sup> | Paris | 9.809 | m/s <sup>2</sup> | | Chicago | 9.803 | m/s <sup>2</sup> | Rio de Janeiro | 9.788 | m/s <sup>2</sup> | | Copenhagen | 9.815 | m/s <sup>2</sup> | Rome | 9.803 | m/s <sup>2</sup> | | Cyprus | 9.797 | m/s <sup>2</sup> | San Francisco | 9.800 | m/s <sup>2</sup> | | Djakarta | 9.781 | m/s² | Singapore | 9.781 | m/s <sup>2</sup> | | Frankfurt | 9.810 | m/s² | Stockholm | 9.818 | m/s <sup>2</sup> | | Glasgow | 9.816 | m/s² | Sydney | 9.797 | m/s <sup>2</sup> | | Havana | 9.788 | m/s² | Tainan | 9.788 | m/s <sup>2</sup> | | Helsinki | 9.819 | m/s <sup>2</sup> | Taipei | 9.790 | m/s <sup>2</sup> | | Kuwait | 9.793 | m/s <sup>2</sup> | Tokyo | 9.798 | m/s <sup>2</sup> | | Lisbon | 9.801 | m/s <sup>2</sup> | Vancouver, BC | 9.809 | m/s <sup>2</sup> | | London (Greenwich) | 9.812 | m/s <sup>2</sup> | Washington DC | 9.801 | m/s <sup>2</sup> | | Los Angeles | 9.796 | m/s <sup>2</sup> | Wellington NZ | 9.803 | m/s <sup>2</sup> | | Madrid | 9.800 | m/s <sup>2</sup> | Zurich | 9.807 | m/s <sup>2</sup> | ## **5.4.** Calibration Error | Error Code | Treatment and Situation | |------------|------------------------------------------------------------------------------| | CERR1 | Resolution (Weighing capacity / minimum division) is exceeds the limitation. | | | Increase minimum division or decrease weighing capacity. | | CERR2 | The initial load (no load output) is larger than 2mV/V. | | | Confirm the loadcell cable. | | CERRS | Negative loadcell output value. Check wiring. | | | Confirm the loadcell cable. | | CERR4 | Mass value exceeds the weighing capacity. | | | Use a mass within the weighing capacity. (Decrease mass value) | | CERR5 | Mass value is too light for the calibration. | | | Increase mass value. | | CERR6 | The loadcell output to be equivalent to minimum division is too small. | | | Use more rough minimum division. | | CERR7 | The polarity of loadcell output is inversed. | | | Confirm the loadcell cable. | | CERRS | The mass value of the weighing capacity exceeds 3.2 mV/V. | | | Confirm the mass and weighing capacity. | | CERR9 | Gravity acceleration is out of range. | | | Correct the value within the range of 9.770 ~ 9.835 m/s <sup>2</sup> . | | CERRIO | Zero output of loadcell unit is out of range. | | | Trim the zero output within 0.0 ~ 2.0 mV/V. | | CERR11 | The loadcell output to be equivalent to minimum division is out of range. | | | Trim the output within 0.0 ~ 3.2 mV/V. | Page 24 AD-4402 ## 6. Applications ## 6.1. Hopper Scale with Material Code In the section, applications are explained according to the right hopper scale that performs batch weighing using a material code. An application is explained mixture of materials using a recipe code. The foundation of hopper scale design is explained. Examlpe: Basic Hopper Scale ## 6.1.1. Definition of Material Code - □ The material code is necessary to store the details before use. And the code is called with code number in a weighing. - □ The material code is used in the procedure that performs batch weighing or loss-in weigh. As the result of the procedure, a constant weight of the material, is called "full" or "full filling", can be got. - □ The material code consists of some index number (name) and some comparison values to get a constant weight of the material. - □ The AD-4402 can store a hundred kinds of material codes. ## 6.1.2. Recalling Material Code The following steps are the explanation to recall the material code stored in the indicator. Suppose that the recipe code is not used. (The menu [Function] - [Function setting] - [Sequence] - [Basic] - [Recipe mode] is set to $[59 \ F - B] \ [D]$ ) #### Caution The material code can be recalled during the last weighing. But the code effects after the batch finish (after finishing the last weighing). - Step 1 Press the **CODE RECALL** key. - Then the material code blinks. - Step 2 Enter the material code using **numerical** keys The details of the material code are displayed in the sub-display. - Step 3 Press the **ENTER** key to decide the code. ## 6.1.3. Editing Principle Parameters of Material Code You can edit the parameters of target weight, free fall and etc. displayed on the subdisplay during a weighing. And items of sub-display can be selected at the menu [Function] - [Function setting] - [General] - [Sub-display]. #### Caution If the flash memory is selected for memory backup ( $\Box \vdash HF - \vdash \vdash)$ ), a current sequential weighing is stopped. - Step 1 Press and hold the **SHIFT** key and press the **CODE RECALL** key. Then the material code blinks. - Step 2 Enter the material code using **numerical** keys The details of the material code are displayed in the sub-display. - Step 3 Press the **ENTER** key to decide the code. - Step 4 Select a parameter using the **★** key on the sub-display. - Step 5 Enter the parameter using **numerical** keys and press the **ENTER** key to store it. - Step 6 If you continue the change, proceed step 4 and 5. - Step 7 If you want to finish the change, press the **ESC** key to return to weighing mode several times. ## 6.1.4. Referring next Material Code You can refer to next material code in the sequential mode that uses plural material codes. Suppose that the recipe code is not used. (The menu [Function] - [Function setting] - [Sequence] - [Basic] - [Recipe mode] is set to $[59 \ F - B] \ [D]$ ) - Step 1 Press the **CODE RECALL** key. Then principle parameters of the next material code are displayed in the sub-display. - Step 2 Press the **ESC** key to return to current mode. Page 26 AD-4402 ## 6.1.5. Editing Full Parameters of Material Code A material code consists of the following parameters. | Name | Display Name | Display<br>Symbol | Display<br>Example | Memory | |--------------------------------|----------------|-------------------|--------------------|-----------| | Material Code | Code | CodE | 11 | | | Material name | Mat Name | | grain | | | Material Hopper No. | Mat Hopper | Hopper | 1 | | | Final | Final | Final | 10.00 kg | | | Free Fall | Free Fall | FFall | 0.01 kg | | | Preliminary | Preliminary | Plm | 1.00 kg | Backed up | | Optional Preliminary | OP.Preliminary | OPP1m | 2.00 kg | RAM | | Over | Over | Over | 0.10 kg | ( factory | | Under | Undr | Undr | 0.10 kg | setting) | | Zero Band | Zero Band | 0Band | 0.02 kg | or | | Full | Full | Full | 0.05 kg | flash | | Tare | Tare | Tare | 5.00 kg | memory | | Supplementary Flow Open Timer | SF oren timer | SFOT | 0.00 s | | | Supplementary Flow Close Timer | SF close | SECT | 0.00 s | | | Automatic Free Fall Range | AFFC range | AFFC | 0.00 kg | | | Initial Dribble Flow | Initial DF | IDF | 0.00 kg | | | Initial Medium Flow | Initial MF | IMF | 0.00 kg | | | Total Weight | Tot | Tot | 10.00 kg | Backed up | | Total Counts | Tot# | Tot# | 1 | RAM | - □ These parameters are stored in backup memory without power supply. - Refer to the backup method [@ĿĦF / /] of the function list. #### Caution If the flash memory is selected for memory backup [DEHF - 11], a current sequential weighing is stopped. #### Edit Material Code - Step 1 Press and hold the **ENTER** key and press the **\*** key. Then menu MatEdit blinks. - Step 2 Press the ENTER key to enter the material code edit. Then menu Edit blinks. - Step 3 Press the **ENTER** key to enter menu edit. - Step 4 Select the material code using **numerical** keys and press the **ENTER**. - Step 5 Enter the material name using **alpanumerical** keys and press the **ENTER** key. - Step 5 Edit other parameters using **numerical** keys, **ENTER** key and **+** key. - Step 6 If you want to finish the change, press the **ESC** key to return to weighing mode several times. #### Search Material Code Use this menu to search blank material code. - Step 1 Press and hold the **ENTER** key and press the **★** key. - Then menu MatEdit blinks. - Step 2 Press the \* key to select menu Search. And press the ENTER key. - Step 3 Then the message is displayed. - Step 4 Press the **ENTER** key to preed next step. - Then the result is displayed. - Step 5 Press the **ESC** key to return to weighing mode several times. #### Delete Material Code The parameter of the material code can be reset in the following menu. - Total value - Setpoints - Total of a material code - All material code - All total ### Example of Deleting Total Value - Step 1 Press and hold the **ENTER** key and press the **★** key. - Then menu MatEdit blinks. - Step 2 Press the ★ key to select menu Delete. And press the ENTER key. - Step 3 Select menu Total using the \* key. And press the ENTER key. - Step 4 Enter the material code using **numerical** keys and press the **ENTER** key. - Step 5 Press the **ESC** key to return to weighing mode several times. ### Copy Material Code - □ The parameters of material code are copied. This copy includes a total weight value and times of accumulation. - Step 1 Press and hold the **ENTER** key and press the **+** key. Then menu MatEdit blinks. - Step 2 Press the \* key to select menu Copy. And press the ENTER key. - Step 4 Specify a original code number using **numerical** keys and press the **ENTER** key. - Step 5 Specify a duplicated code number using **numerical** keys and press the **ENTER** key. - Step 6 Press the **ESC** key to return to weighing mode several times. Page 28 AD-4402 #### Tare of Material Code - Use to copy current tare to the preset tare. - Set a preset tare function [ $\frac{GEbF}{I}$ ] of the function list. - [ $\Box E \Box F \Box P$ ] [ $\Box$ ] If the preset tare of the code is zero, the last tare value effects. (factory settings) - [[EbF 12]] [1] If the preset tare of the code is zero, tare value is reset. - Step 1 Press and hold the **ENTER** key and press the **\*** key. Then menu MatEdit blinks. - Step 2 Press the \* key to select menu Tare. And press the ENTER key. - Step 4 Specify a code number using **numerical** keys and press the **ENTER** key. Then current tare value is copied to preset tare. - Step 5 Press the **ESC** key to return to weighing mode several times. ## $\mathbf{X}$ ## 6.2. Simple Hopper Scale with Recipe Code The section explains for recipe code (another name: formal function). The recipe code is used on a simple hopper scale to mix several materials that are preset target value. "The simple hopper scale" means that does not control the ratio and a weight of ingredient, but simply accumulates the preset target weight of the material code. Therefore, the recipe code is a code to accumulate the preset target weight of the material code. Maximum 100 recipe codes. ## 6.2.1. Definition of Recipe Code (Formal Function) - A recipe code consists of plural preset material codes. Maximum ten material codes can be stored in a recipe code. - □ A recipe code is described in order to accumulate target weight of the material code. - □ The indicator AD-4402 can store a hundred recipe codes. - □ The recipe code is necessary to store the details before use. And the code is called with code number in a weighing. - The recipe code is a code to accumulate the preset target weight of the material code. If a recipe code is used in the batch weighing (or loss-in weight), you can get a weight that is accumulated the preset target weight of the material code. - □ The recipe sequence that is used recipe code calls formula sequence, too. Page 30 AD-4402 ## 6.2.2. Using a Recipe Code - □ Set the menu [Function] [Function setting] [Sequence] [Basic] [Recipe mode] to sequential mode ( [59 F- 8] to [/] or [2] ), when the recipe code is used. - [59 F-8] [1] Semi-automatic mixture sequence - [59 F-8] [2] Automatic mixture sequence ## 6.2.3. Construction of Recipe Code - □ The indicator AD-4402 can store a hundred recipe codes. - □ A recipe code can store maximum ten material codes in order of accumulating them. - □ These parameters are stored in backup memory without power supply. - Refer to the backup method [@EHF | |] of the function list. #### Caution If the flash memory is selected for memory backup [[]+HF- | |], a current sequential weighing is stopped. | Name | Display Symbol & Example | Memory | |------------------------------------------|--------------------------|--------------------| | Recipe code | rCodE | Backed up RAM | | Recipe name | Blend coffee | ( factory setting) | | Material codes of maximum ten codes. | ר ור ו | or | | It is stored in order to accumlate them. | EodE | flash memory | | Accumulated Weight for recipe code | Total Weight | | | Accumulated Weight for recipe code | 10.00 kg | David a DAM | | Accumulation Counts for recipe code | Total Counts | Backed up RAM | | Accumulation Counts for recipe code | 10.00 kg | | ## 6.2.4. Recalling a Recipe Code □ The following steps are the explanation to recall the recipe code stored in the indicator. Suppose that the recipe code is used (The menu [Function] - [Function setting] - [Sequence] - [Basic] - [Recipe mode] is set to [59 F - 8] [1] or [2]). #### Caution The code can be recalled during the last weighing. But the code effects after the butch finish (after finishing the last weighing). - Step 1 Press the CODE RECALL key. - Then the recipe code blinks. - Step 2 Enter the material code using **numerical** keys The details of the recipe code are displayed in the sub-display. - Step 3 Press the **ENTER** key to decide the code. ## 6.2.5. Arranging Material Code in Recipe Code - □ The way of arranging material code described in a recipe code. - Step 1 Press and hold the **ENTER** key and press the **CODE RECALL** key. - Step 2 Select a recipe code number using **numerical** keys and press the **ENTER** key. Then first material code blinks. - Step 3 Select a material code using the following keys. - **★** key, **numerical** keys and **SHIFT** key - Step 4 Press the **ENTER** key to store it. Then the next code blinks. - Step 5 Continue step 3 and 4 until the last material code is stored. - Step 6 Press the **ESC** key to return to weighing mode several times. ## 6.2.6. Editing Full Parameters of Recipe Code All parameters of the recipe code can be edited in this menu. #### Edit Name of Recipe Code - Step 1 Press and hold the **ENTER** key and press the **★** key. Press the **★** key. Then menu RecipeEDIT blinks. - Step 2 Press the **ENTER** key to enter the recipe code edit. Then menu edit blinks. - Step 3 Press the **ENTER** key to enter menu edit. - Step 4 Select a recipe code using **numerical** keys and press the **ENTER**. - Step 5 Name a recipe code using **alpanumerical** keys and press the **ENTER** key. - Step 6 If you want to finish the change, press the **ESC** key to return to weighing mode several times. #### Search of Recipe Code Use this menu to search blank material code. - Step 1 Press and hold the **ENTER** key and press the **★** key. Press the **★** key. Then menu RecipeEDIT blinks. - Step 2 Press the \* key to select menu Search. And press the ENTER key. - Step 3 Then the message is displayed. - Step 4 Press the **ENTER** key to preed next step. Then the result is displayed. - Step 5 Press the **ESC** key to return to weighing mode several times. ## Delete of Recipe Code The parameter of the recipe code can be reset in the following menu. Page 32 AD-4402 - Total value - Recipe total value - All total value - All Recipes #### Example of Deleting Total Value - Step 1 Press and hold the **ENTER** key and press the **★** key. Then menu RecipeEDIT blinks. - Step 2 Press the \*\* key to select menu Delete. And press the ENTER key. - Step 3 Select menu Total using the key. And press the ENTER key. - Step 4 Enter the recipe code using **numerical** keys and press the **ENTER** key. - Step 5 Press the **ESC** key to return to weighing mode several times. #### Copy of Recipe Code - □ The parameters of recipe code are copied. This copy includes a total weight value and times of accumulation. - Set a preset tare function [ GEnF I2 ] of the function list. - [ $\Box E \cap F \Box P = =$ - [[6EnF 12]] [[1]] If the preset tare of the code is zero, tare value is reset. - Step 1 Press and hold the **ENTER** key and press the **★** key. Then menu RecipeEDIT blinks. - Step 2 Press the \* key to select menu Copy. And press the ENTER key. - Step 4 Specify a original code number using **numerical** keys and press the **ENTER** key. - Step 5 Specify a duplicated code number using **numerical** keys and press the **ENTER** key. - Step 6 Press the **ESC** key to return to weighing mode several times. ## 4 6.3. System Design of Hopper Scale #### 6.3.1. Operation and I/O Design In General, looking an old type hopper scale design, the simplest indicator only displayed weighing value, other system devices communicated the control signal with each I/O interface. And the key operation and monitoring the system separately were controlled. - □ The indicator AD-4402 has the I/O interface to control the system, sub-display to monitor system information, main display to display weighing data and keys to control the system in a unit. - □ The indicator is designed so as to be able to select arbitrary keys and terminals to control the system form front panel keys and the I/O interface with the menu function. And the function of keys and terminals can be designed in the same way. - □ The system information of sub-display can select at the function list. #### 6.3.2. Design Example Suppose that the I/O, keys and sub-display are as follows: Supply start: F1 key, [OEHF- 2] [6] [OthF- 3] [13] Emergency stop key: F2 key, Dribble signal (low power): [OutF - 1] [6] terminal B1, [Outf - 2] [14] Batch finish signal (low power): terminal B2, [59 F- 8] [0] Not used recipe code at "Not used recipe sequence" Use default setting about sub-display [506 F 1] [0] ## Setup - Step 1 Enter the function list. - Step 2 Select the menu **F1** key.([Function] [Function setting] [General] [Other] [F1 key]) - Step 3 Select [6] of Batch start at **F1** key and store it. - Step 4 Select [13] of Forced batch finish at **F2** key and store it. - Step 6 Select the menu terminal B1. ([Function] - [Function setting] - [Control I/O Function] - [Output] - [OUT (B1)]) - Step 8 Select [6] of Dribble flow at terminal B1 and store it. - Step 9 Select [14] of Batch finish at terminal B2 and store it. - Step 10 Set [6] of "Not used recipe code" at Recipe sequence. ([Function] - [Function setting] - [Sequence] - [Basic] - [Recipe mode]) Step 11 Select [D] of the default menu in the and store it. ([Function] - [Function setting] - [General] - [Sub-display] - [Weighing display]) Step 12 Press the **ESC** key several times to return to the weinghing mode. #### Operation and Response - □ When the F1 key is pressed, a batch weighing is started and terminal B1 works. - □ When the F2 key is pressed, batch weighing is stopped. - □ When the target weight is got, terminal B2 is turned on. Page 34 AD-4402 # 7. Weighing Mode # 7.1.1. Contents of Batch Weighing Mode ### **Batch Weighing** | Normal Batching | Section 7.2 | |---------------------------------------------------|---------------| | Normal Batching using Sequential Weighing Mode | Section 7.3.1 | | Normal Batching using Customer Programmed Control | Section 7.4.1 | Loss-in weight Section 7.2 Loss-in weight using Sequential Weighing Mode Section 7.4.1 Loss-in weight using Customer Programmed Control Section 7.4.2 Selection of Batch Weighing Section 7.2.1 ## **Controlled Output Signals** The type of the signal output to control gates (valves) in the batch weighing. Sequential Weighing Mode (built-in automatic program mode) Customer Programmed Control (Comparison Output) Section 7.3 Section 7.4 ### Partial Sequence of Sequential Weighing Mode | Compensation Sequence | Section 7.3.3 | |--------------------------------------|----------------| | Approach Sequence | Section 7.3.4 | | Discharge Sequence | Section 7.3.5 | | Plain Recipe Sequence | Section 7.3.6 | | Automatic Selection of Supplying Mat | Section 7.3.7 | | Nozzle Operation (vacuum cleaner) | Section 7.3.8 | | Mixture Sequence | Section 7.3.9 | | Safety Check Function | Section 7.3.10 | | Pause and Emergency Stop | Section 7.3.11 | | Restart Sequence | Section 7.3.12 | | Automatic Free Fall Compensation | Section 7.3.13 | | Real Time Free Fall Compensation | Section 7.3.14 | # 7.2. Batch Weighing Mode - □ The mode is used to get a (constant) target weight from a supplying Mat for the hopper scale and filling machine. And the mode can be classified to normal batch weighing and loss-in weight. - □ There are two control methods of the customer programmed control and sequential control (built-in automatic program mode). **Example: Normal Batching** Examlpe: Loss-in Weight ### **Normal Batching** - Normal batch weighing weighs the material charged into the hopper. - □ The control gates (valves) can be used. (The full flow, medium flow and dribble flow) ### Loss-in-weight - Loss-in weight weighs the material discharged form the hopper. - □ The control gates (valves) can be used. (The full flow, medium flow and dribble flow) #### Caution Use the PLC (programmable logic controller unit) to supply material into the weighing hopper and monitor the bulk of material of the hopper. Page 36 AD-4402 # 7.2.1. Selection of Batch Weighing ### Selection of Normal Batching or Loss-in-weight □ The mode can be selected at Loss-in weight at the Function list. ([Function] - [Function setting] - [Sequence] - [Basic] - [Current weighing]) [59 F- 3] [0] Normal batch weighing [59 F - 3] [/] Loss-in weight [59 F- 3] [2] External selection (Normal batch weighing or Loss-in weight) ### External Selection (Normal batch weighing or Loss-in weight) $\square$ Normal batch weighing and Loss-in weight can be selected by a signal of the input terminal that is set to [9] of External switch control. (The menu [Function] - [Function setting] - [Control I/O Function] - [Input] ) □ Example of use: The material of 100 kg is supplied to the hopper in first step. It is subdivided into material of 10kg. #### Advise If the mode is switched concerning a specified material only, set the hopper no. in the material code, short the hopper no. output line and the supply/discharge switch input line. Set the delay timer $[59 \ F-32]$ to "above 0.1sec.". # **7.3. Sequential Weighing Mode** - □ The sequential weighing mode (built-in automatic program mode) directly outputs control signals (example: medium flow valve, batch finish) without the PLC. - The sequential weighing mode can include several partial sequences like an approach sequence, mixture sequence and etc. into basic sequential weighing. - □ The power of the control I/O signal output is too small to drive a large valve directly. Use option relay output (OP-02) to drive them. - □ If the number of the control I/O terminals is not enough, use option parallel I/O (OP-05). #### Forecast Control Function □ The function forecasts a timing to close the dribble flow (valve) and realizes more precision weighing. The forecast method calculates the weighing value at some points between sampling data and compares it with the dribble setpoint. The effect is equivalent to use a high speed A/D converter. The sampling rate of this indicator is 100 [times/second]. But the ratio is equivalent to 1000 [times/second], when the function is used. #### Caution - If prual supplying mat is used (the recipe code is used), the mode can not use. Relation section is "7.3.7. Automatic Selection of Supplying Mat". - Use the high speed high precision valve like a direct voltage solenoid valve. - Design the mechanical valve so as to minimize the delay time. #### Normal Batching of Sequential Weighing 7.3.1. - Normal batch weighing weighs the material charged into the hopper. - □ The control gates (valves) can be used. (The full flow, medium flow and dribble flow) ### Concerning Parameters of the Function Selecting normal batching of sequential weighing. ``` [59 F- /] [2] Sequential weighing [Function] - [Function setting] - [Sequence] - [Basic] - [Weighing mode] [59 F- 3] [0] Mormal batch weighing [Function] - [Function setting] - [Sequence] - [Basic] - [Loss-in weight] ``` Making zero display automatically when starting the sequence. ``` [59 F-11] [Function] - [Function setting] - [Sequence] - [Control] - [Batch start settings] ``` Preventing vibration due to gate operation. ``` [59 F - 33] [Function] - [Function setting] - [Sequence] - [Timer] - [Full flow comparison interrupt timer] [59 F-34] [Function] - [Function setting] - [Sequence] - [Timer] - [Medium flow comparison interrupt timer] [59 F-35] [Function] - [Function setting] - [Sequence] - [Timer] - [Dribble flow comparison interrupt timer] ``` Page 38 AD-4402 Making alarm when the sequence is time over. Maximum weighing time between start and batch finish can be set. Error code [SQ. ERR 4] is displayed, when an error occurs. [Function] - [Function setting] - [Sequence] - [Timer] - [Batch monitoring timer] □ Removing "stable" from comparison condition. [59 F - 13] [Function] - [Function setting] - [Sequence] - [Control] - [Eval condition] Changing the timing of comparison. [59 F-37] [Function] - [Function setting] - [Sequence] - [Timer] - [Eval delay timer] Changing accuracy of comparison. [59 F-48] The time to average weighing value at batch finish can be set. The timing of batch finish delays for the time. [Function] - [Function setting] - [Sequence] - [Timer] - [Average Eval time] Changing the pulse width of weighing finish output. [59 F-43] If zero is set to this, the output leaves until next start signal. [Function] - [Function setting] - [Sequence] - [Timer] - [Batch finish output on] Mixing it at weighing finish. [59 F-14] [Function] - [Function setting] - [Sequence] - [Control] - [Batch finish action] Discharging it at weighing finish. [59 F - 15] [Function] - [Function setting] - [Sequence] - [Control] - [Discharge finish action] Using customer programmed control for hi signal, go signal and low signal. [59 F - 5] [Function] - [Function setting] - [Sequence] - [Basic] - [Comparison] Drawing: Normal Batching of Sequential Weighing Page 40 AD-4402 # 7.3.2. Loss-in Weight of Sequential Mode - □ Loss-in weight weighs the material discharged form the hopper. - □ The control gates (valves) can be used. (The full flow, medium flow and dribble flow) ### Concerning Parameters of the Function Selecting normal batching of sequential weighing. - Making zero display automatically when starting the sequence. [59 F-||| [Function] [Function] [Sequence] [Control] [Batch start settings] - Switching normal batching and loss-in weight from the I/O interface. - Checking whether is there the remainder weight for one batch weighting. - [59 F-55] [7] When the remainder weight decreases under target weight + nearly zero, the signal "nearly zero" is output. [Function] [Function setting] [Sequence] [Setpoint (Compared value)] [Add final value and zero band] - [59 F-56] [/] If this is set, when the hopper is filled fully, the signal "Full" is output. [Function] [Function setting] [Sequence] [Setpoint (Compared value)] [Add final value and full value] Drawing: Loss-in Weight of Sequential Weighing Page 42 AD-4402 ### 7.3.3. Compensation Sequence □ The compensation sequence is used to make up (add) the material automatically, when the result of current batch weighing is under weight. ### Concerning Parameters of the Function Storing a maximum repeat counts of compensation sequence. [59 F-18] If number is zero, this sequence is canceled. When the result is under weight after the sequence, An error SQ. ERR 2 is displayed. [Function] - [Function setting] - [Sequence] - [Control] - [Maximum number of compensation] Setting the time to open the dribble gate. Set the time at each material code. [Function] - [Function setting] - [MatEDIT] - [Edit] - [Compensation flow open timer] Setting the time to close the dribble gate. Set the time at each material code. When the weighing value is stable and under weight, the compensation is repeated. Take a longer time closing gate, if it does not use a stable signal. [Function] - [Function setting] - [Material Edit] - [Edit.] - [Compensation flow close timer] □ Removing the nozzle at this sequence, when the nozzle operation is used. [59 F-12] [2] Nozzle contact stop sequence Factory setting is "not used". When it is necessary to shift up the nozzle to reduce a weighing error, use this parameter of $[59 \ F - 12]$ . [Function] - [Function setting] - [Sequence] - [Control] - [Nozzle control] **Drawing: Compensation Sequential** Page 44 AD-4402 ### 7.3.4. Entrance Sequence The entrance sequence is used to prevent the material form scattering before the batch weighing when a liquid or powder is weighed. When the sequence starts, dribble gate is opened at first, medium gate is opened next and full gate is opened at last. The parameter can be set in each material code. ### Concerning Parameters of the Function Using this sequence to prevent the material form scatting. Set the following parameters in each material code. Medium supply effective bandwidth Dribble supply effective bandwidth Editing these parameters. Edit the parameters in the function mode. [Function] - [Function setting] - [MatEDIT] - [Edit] Inhibiting the comparison during the sequence. [59 F-35] Store the time of the dribble flow comparison inhibit timer. [Function] - [Function setting] - [Sequence] - [Timer] - [Dribble flow comparison interrupt timer] [59 F-34] Store the time of the medium flow comparison inhibit timer. [Function] - [Function setting] - [Sequence] - [Timer] - [Medium flow comparison interrupt timer] **Drawing: Entrance Sequence** Page 46 AD-4402 # 7.3.5. Discharge Sequence The discharge sequence is used to discharge the material form the hopper and clear the hopper after finishing a batch weighing. ### Concerning Parameters of the Function - □ Storing the time between receiving start command and opening the discharge gate. [59 F-38] [Function] [Function setting] [Sequence] [Timer] [Discharge start delay timer] - Using the alarm for the discharge time limit. □ Storing the time between cleared hopper and closed the gate. Discharging it automatically when finished the weighing. Discharging it automatically when finished the mixture weighing. ``` [59 F-17] When the finish signal is turned off, the discharge start timer starts. [Function] - [Function setting] - [Sequence] - [Control] - [Recipe finish action] ``` Drawing: Discharge Sequence Page 48 AD-4402 # 7.3.6. Plain Recipe Sequence - □ The plain recipe sequence mixes preset target weights of plural materials that are stored in a recipe code. A hundred recipe codes can be stored in the indicator. A recipe code can store ten material codes and the order to mix them. - □ There are the following two modes that can select at Recipe mode. - Semi-automatic [59F 8] [/] The mode that uses (external) start command for each material. - Automatic [59F 8] [2] The mode that does not need each start command. When the under weight occurs in a material, an error code SQ ERR 2 is displayed and sequence stops. ### Concerning Parameters of the Function Selecting normal batching of sequential weighing. ``` [59 F-8] Recipe mode [59 F-8] [/] Semi-automatic mode, or [59 F-8] [/] Automatic mode [Function] - [Function setting] - [Sequence] - [Basic] - [Recipe mode] ``` - Making zero display automatically when starting the recipe sequence. [59 F 16] [Function] [Function setting] [Sequence] [Control] [Recipe start action] - Clearing tare value, mixing them and discharging them when finishing the recipe sequence. ``` [59 F - 17] [Function] - [Function setting] - [Sequence] - [Control] - [Recipe finish action] ``` Changing the width of the finish signal output of the recipe sequence. ``` [59 F-45] [Function] - [Function setting] - [Sequence] - [Timer] - [Recipe finish output on] ``` Calculating totals in each recipe code. ``` [59 F-62] [Function] - [Function setting] - [Sequence] - [Accumulation] - [Automatic recipe code total] ``` ### Weighing a single material code during a recipe sequence When it have to weigh the material code temporarily during a recipe sequence, use formulation (recipe) prohibition command of the external I/O or OP-05. When the prohibition works, the material code can be used and total of the recipe is not accumulated. Setting of the I/O. ``` [ In F-nn] [49] Prohibition of recipe sequence. nn: terminal number of I/O. [Function] - [Function setting] - [Control I/O] - [Input] ``` Drawing: Plain Recipe Sequence Page 50 AD-4402 # 7.3.7. Automatic Selection of Supplying Mat When there are plural supplying mats of materials, the indicator has to control these gates. There are the following two method to control them. #### Case 1: Direct Gate Control - □ The method is that connects each gate control lines of supplying mats to the I/O terminals of the indicator and the indicator directly controls them. - □ Three kinds of gates can be used in a supplying hopper. (Full, medium, dribble gate) - □ Number of supplying hopper: **Ten hoppers** can be used. - Preset material codes and recipe codes can be used. - □ The selection of the supplying mat is [MatEDIT] [Material code] [Material hopper]. The selection of the I/O terminals is [Function] [Function setting] [Control I/O Function] [Output]. - □ Even if a code is recalled during the sequence, the code does not work until the sequence finishes. - □ When number of the I/O terminals is not enough, use options of relay output (OP-02) and parallel I/O (OP-05). **Example: Direct Gate Control** If a I/O extension needs, use OP-02 and OP-05. ### Case 2: Gate Control with Supplying Mat Selection The method: - □ Make **gate-lines** that gates of a kind in each supplying mat are connected to the I/O terminal of the indicator in parallel. - □ Make **Hop-lines** that lines identified each mat are connected to the I/O terminal. - The indicator can control any gate which the gate-line and mat-line is active. (logical AND gate) - □ Three kinds of gates can be used in a supplying hopper. (Full, medium, dribble gate) - Number of supplying hopper: Twenty hoppers can be used. - Preset material codes and recipe codes can be used. - □ The selection of the supplying mat is [MatEDIT] [Material code] [Material hopper]. The selection of the I/O terminals is [Function] [Function setting] [Control I/O function] [Output]. - □ When number of the I/O terminals is not enough, use options of relay output (OP-02) and parallel I/O (OP-05). Example: AND Gate Control If a I/O extension needs, use OP-02 and OP-05. # 7.3.8. Nozzle Control Sequence (vacuum cleaner) □ The nozzle is used for filling liquid or powder to bottle. The procedure is that inserts the nozzle to the bottle automatically using the signal "nozzle down" before the weighing, weighs it and removes the nozzle when dribble flow is finished. Therefore, the result (comparison) of weighing is not affected. #### Advise - □ In case of using the nozzle control sequence [59 F-12] [Function] [Function setting] [Sequence] [Control] [Nozzle control] - □ In case of using the timer to ready nozzle. [59 F-32] [Function] [Function setting] [Sequence] [Timer [Batch start delay timer] - In case of using the nozzle down [UutF-nn] Nozzle down nn: terminal number of the I/O. [Function] - [Function setting] - [Control I/O] - [Output] □ In case of compare it after shifting up nozzle [59 F-12] [Function] - [Function setting] - [Sequence] - [Control] - [Nozzle control] Page 52 AD-4402 ### 7.3.9. Mixture Sequence □ The mixture sequence is used to mix or stir it. The signal is output from the I/O terminal set to mixips. The timing of weighing finish, discharge finish and mixture finish can be selected. ### Concerning Parameters of the Function Using the mixture sequence [0utF-nn] [12] Mixture nn: terminal number of I/O. [Function] - [Function setting] - [Control I/O] - [Output] Relay output (OP-02), parallel I/O (OP-05) can be used. Mixing it at weighing finish Mixing it after discharge Mixing it after formula Storing the time of mixture Safety check during mixture #### Advise Safety check during mixture When the specified input terminals at [59 F-74] are all ON, it supposes that the sequence is safety and is continued. If a terminal of them is OFF, an error code is output and sequence is stopped. Page 54 AD-4402 # 7.3.10. Safety Check Function - □ The function is used to stop the sequence when an error or an emergency happens. - When the function works, an error code is displayed and an error signal is output form preset I/O terminal that weighing sequence error [22] is selected at [Function] [Function setting] [Control I/O] [Output]. - □ The control inputs of the function use the preset I/O terminals or OP-05 terminals that select safety confirmation. - In maximum, eight input terminals can use. - □ The kind of the safety check functions is as follows: | Code | Classification | Action | |----------|------------------------------------|------------------------------------| | 59F-71 | Condition of the start | Specify the safety confirmation | | 59F - 72 | Condition of the discharge | inputs on the I/O or OP-05. | | 59F - 73 | Condition of the recipe (compound) | When all inputs are not ON | | 59F - 74 | Condition of the mix | (active), the sequence is stopped, | | 59F - 75 | Condition of the whole sequence | an error code is displayed. | Examlpe: Safety check # 7.3.11. Pause and Emergency Stop - □ The pause input is used to stop the sequence temporarily. When the sequence pauses, SQLERR ② is displayed and an error code is output. - □ The emergency stop input is used to stop the sequence. When the sequence is stopped, the alarm1 sounds and No. □1□ □ □ is displayed. When the emergency stop is canceled, the status move to the pause (temporary stop). - □ Refer to section "7.5.11.Error Message and Alarm" for the details. - □ The I/O terminal and OP-05 terminal can be assigned to the pause input and emergency input. ### Concerning Parameters of the Function Selecting the I/O terminal as the pause input or the emergency input. ``` [In F-nn] [22] Pause (Temporary stop) [In F-nn] [I3] Emergency Stop nn: terminal number of I/O. [Function] - [Function] - [Control I/O Function] - [Input] ``` Selecting the OP-05 terminal as the pause input or the emergency input. ``` [05 F-nn] [22] Pause (Temporary stop) [05 F-nn] [13] Emergency Stop nn: terminal number of I/O. [Function] - [Function setting] - [slot kk] kk: The slot number installed OP-05. ``` #### Restart Sequences from Pause 7.3.12. - □ The restart input is used to start from the point that is stopped the last sequence. □ The control inputs of the function use the preset I/O terminals or OP-05 terminals that select Restart. - □ The action of the function is as follows: | When stopped it | Before the restart | Action of the restart | |-----------------------------|-------------------------|----------------------------------| | During dribble supply of | | Start from dribble supply of | | entrance sequence | | entrance. sequence | | During preliminary supply | | Start from preliminary supply of | | of entrance sequence | All gates are closed | entrance sequence | | During optional preliminary | | Start from optional preliminary | | During preliminary | | Start from preliminary | | During dribble | | Start from dribble | | Waiting batch finish signal | | Waiting batch finish signal | | During compensation | | Start from compensation | | During nozzle operation | Stopping the operation | Start from nozzle operation | | When mixing them | Stopping the mix | Start from the mix | | During discharge | Stopping discharge | Start from discharge | | During recipe sequence | According to above list | According to above list | Page 56 AD-4402 # 7.3.13. Automatic Free Fall Compensation □ The function arranges the free fall parameter using value averaged the last four weighing values so as to get more precision weighing. ### Concerning Parameters of the Function Using the automatic free fall compensation ``` [59 F-20] [/] Average of last four times free fall. [Function] - [Function setting] - [Sequence] - [Control] - [Free fall compensation] ``` Using the automatic free fall effective bandwidth [Function] - [Function setting] - [MatEDIT] - [Code No.] - [AFFC range] Refer to section 6.1.5. Editing Full Parameters of Material Code. Using the normal free fall ``` [59 F-20] [0] No (Not used) ``` When using the signal form the I/O terminal to control free fall, use this. [Function] - [Function setting] - [Sequence] - [Control] - [Free fall compensation] Storing the result of the automatic free fall compensation of each material. ``` [59 F- 9] [/] Change free fall value When using the flash memory, set to [0EHF- //] [2]. [Function] - [Function setting] - [Sequence] - [Basic] - [Material code, free fall value] ``` #### Advise - □ When the automatic free fall compensation can not work. - Check the flux of dribble flow. When the error (| result - final value |) of weighing value is bigger than this parameter, the function does not work. Check that dribble flow timer is shorter. When the timer is shorter than dribble flow auto-free fall override time [59 F-36], the function does not work. - □ When the accuracy does not improve, even if automatic free fall compensation is used. - Check the stability of the dribble flow. When the dribble flow is unstable and dribble flow timer is shorter, the function can not work correctly. - □ When the result becomes over, even if automatic free fall compensation is used. - Remove between preliminary and free fall When the value of preliminary and free fall are near, medium flow only works to reach to final value and the dribble flow can not work. # 7.3.14. Real Time Free Fall Compensation □ The function arranges the free fall parameter to get more precision weighing during the sequence (in real-time calculation). Example: this function fits a liquid weighing (water, cement, tar) that flow rate is not constant due to temperature, viscosity and the remains. Examlpe: Real Time Free Fall Comensation ### Concerning Parameters of the Function Using the real time free fall compensation. Using the automatic free fall effective bandwidth [Function] - [Function setting] - [MatEDIT] - [Code No.] - [AFFC range] Refer to section 6.1.5. Editing Full Parameters of Material Code. □ Storing the result of the automatic free fall compensation of each material. #### Advise - □ When the accuracy does not improve, even if automatic free fall compensation is used. - Check the stability of the dribble flow. If material includes big lump, when the dribble flow is unstable and irregular and when dribble flow timer is shorter, this function can not work correctly. - □ When the dribble flow timer is shorter than dribble flow unstable time [59 F 35]. When the timer is used default value of each material code. Page 58 AD-4402 # **7.4.** Customer Programmed Control (Comparison Output) - □ The "customer programmed control" simply outputs the comparison result of the setpoints and weighing value. - The setpoint: It means the preset standard value to compare the weighing value. - □ The comparison and output of the result are performed at every sampling time. - □ If the function is used, the PLC (programmable logic controller unit) needs for a batch weighing on the hopper scale. - □ The power of the control I/O signal output is too small to drive a large valve directly. Use option relay output (OP-02) to drive them. - ☐ If the number of the control I/O terminals is not enough, use option parallel I/O (OP-05). #### Caution Approach sequence and compensation sequence can not use in the the "customer programmed control" #### Advise - Automatic free fall compensation and Accumulation function If the start key is used, in the same as sequential mode, when three gates are closed, criteria timer has worked and weighing value becomes stable, the batch finish signal can output. - □ The start key is not necessary to compare weighing value basically. # 7.4.1. Normal Batching of Comparison Function - □ The function outputs the gate control signals that are compared setpoint and weighing data that is accumulated materials to hopper. - □ When the weight increases above the setpoint, the gate control signal turns off. When the weight decreases under the setpoint, the gate control signal turns on. - □ There is not direction for the weighing sequence in this function. Therefore, the comparison is repeatable (reversible). ### Concerning Parameters of the Function Using the normal batching of comparison function ``` [59F- ]] [] Costomer programmed control [59F- 3] [] Normal batch weighing [Function] - [Function] - [Sequence] - [Basic] ``` Changing waiting time of judgment ``` [59F-37] Eval delay timer [Function] - [Function] - [Sequence] - [Timer] ``` Changing the pulse width of batch finish output ``` [59F-43] Batch finish output on The arbitrary width can be set. If zero is set, the output keeps until next start. [Function] - [Function setting] - [Sequence] - [Timer] ``` □ Using signals of "over", "acceptable" and "under" in the comparison function. ``` [59F - 5] Commanison [Function] - [Function setting] - [Sequence] - [Basic] ``` Changing the accuracy of the comparison ``` [59F-48] Averaging Eval time The average time of batch finish output is set. The output of batch finish delays by the average time. [Function] - [Function setting] - [Sequence] - [Timer] ``` Using the manual compensation ``` [ln\ F-nn] [l0] Manual free fall compensation [05\ F-nn] [l0] Manual free fall compensation ``` nn: terminal number of the I/O. The input to control free fall by the external PLC. [Function] - [Function setting] - [Control I/O] - [Input] Page 60 AD-4402 Drawing: Normal Batching of Comparison Function # 7.4.2. Loss-in Weight of Comparison Function - □ The function outputs the gate control signals that are compared setpoint and weighing data that is discharged materials from hopper. - □ When the weight decreases above the setpoint, the gate control signal turns off. When the weight increases under the setpoint, the gate control signal turns on. - □ There is not direction for the weighing sequence in this function. Therefore, the comparison is repeatable (reversible). ### Concerning Parameters of the Function Using the loss-in weight of comparison function ``` [59F- 1] [1] Constomer programmed control [59F- 3] [1] Loss-in weight [Function] - [Function] - [Sequence] - [Basic] ``` Using the external control switch for normal batch and loss-in weight. ``` [59F - 3] [2] External exchange If the external switch is used, connect to the I/O termin ``` If the external switch is used, connect to the I/O terminal. This mode can use three gates. [Function] - [Function setting] - [Sequence] - [Basic] Checking the remains of the hopper whether is there the weight of the last operation. ``` [59F-55] Add final value and zero band ``` When the remains reach under the **final value + zero band**, the zero band signal is output. [Function] - [Function setting] - [Sequence] - [Setpoint (Compared value)] Using the external switch ``` [\ln \tilde{F}-nn] [9] Supply switch control nn: terminal number of the I/O. [Function] - [Function setting] - [Control I/O] - [Input] ``` □ Checking the remains of the hopper whether is there the weight of the last operation. ``` [59F-56] Add final value and full value ``` When the **final value + full filling value** is negative, the full filling signal is output. [Function] - [Function setting] - [Sequence] - [Setpoint (Compared value)] Changing the accuracy of the comparison ``` [59F-48] Average time at criteria ``` The average time of batch finish output is set. The output of batch finish delays by the average time. [Function] - [Function setting] - [Sequence] - [Timer] Using the manual compensation ``` [ln \ \bar{F}-nn] [l0] Manual free fall compensation [05 \ F-nn] [l0] Manual free fall compensation ``` nn: terminal number of the I/O. The input to control free fall by the external PLC. [Function] - [Function setting] - [Control I/O Function] - [Input] Page 62 AD-4402 #### Advise Using the automatic switch of normal batch and loss-in weight. Specify the output terminal for the hopper number in the material code on the I/O. Specify the input terminal to change the mode on the I/O. [In F-nn] [9] Connect the output terminal to the input terminal. Connect the output common terminal to the input common terminal. Set the delay time above 0.1 second at [59F-32] Batch start delay timer. # X # 7.5. Other Functions # 7.5.1. Re–Zero Operation - □ Performing the function, a gross display is zeroed and an current weighing value is used as a standard point. - □ The operation of the function can perform form the front key, the input terminal of the I/O and command input. - □ The adjustable range is based on the zero calibration and $\mathbb{Z}$ =ro range [ $\mathbb{L}$ $\mathbb{E}$ n $\mathbb{E}$ - $\mathbb{E}$ ] of the function list. The range is displayed in the unit of percentage of the weighing capacity. - □ The re-zero data is stored in the memory without power supply. - Resetting the re-zero data, use the I/O terminal or the F1 $\sim$ F4 key that is set to Zero clear [In F-nn] [ $\stackrel{?}{=}$ ]. nn: terminal number of I/O. #### Caution □ When the internal A/D converter is out of range, the re-zero operation be not performed and the error code ZR.ERR is displayed. ### Concerning Parameters of the Function Changing the range to do the re-zero operation. ``` [LEnF- 6] Zero range The maximum range is 30% of the capacity. [Function] - [Function setting] - [General] - [Weighing] ``` Using the prohibition of the re-zero operation in the unstable condition. ``` [GEnF-9] Tare and zero compensation at unstable status [Function] - [Function] - [General] - [Weighing] ``` Turning on the display, the re-zero function is used. ``` [GEnF-13] Clear mode at rower ON [Function] - [Function setting] - [General] - [Weighing] ``` # 7.5.2. Zero Tracking Function □ The function automatically traces the weighing deviation at nearly zero point and keeps zero display of gross display. ### Concerning Parameters of the Function □ Changing the time of zero tracking ``` [GEnF-7] Zero tacking time [Function] - [Function] - [General] - [Weighing] ``` Changing the range of zero tracking ``` [GEnF-8] Zero tacking band width [Function] - [Function setting] - [General] - [Weighing] ``` ### 7.5.3. Tare □ The relation of display is as follows: Net = Gross - Tare ### Concerning Parameters of the Function Prohibiting tare during unstable weighing [GEnF-9] Tare and zero compensation at unstable status [Function] - [Function] - [General] - [Weighing] Prohibiting tare during negative weighing [GEnF-10] Tare at negative GROSS weight [Function] - [Function setting] - [General] - [Weighing] Resetting tare at turning on the indicator [GEnF-13] Clear mode at power ON [Function] - [Function setting] - [General] - [Weighing] # 7.5.4. Preset Tare (Fixed Tare Function) □ The preset tare can store in each material code. ### Concerning Parameters of the Function Using preset tare [GEnF-11] Preset tare [Function] - [Function setting] - [General] - [Weighing] Using preset tare for partial material code [GEnF-12] Preset tare=0 [Function] - [Function setting] - [General] - [Weighing] Classifying normal tare and preset tare on the serial data [EnF-16] Activiation of fixed tare action [Function] - [Function setting] - [General] - [Weighing] # 7.5.5. Customizing Function Key (Key Design) Refer to 2.2.1. Keys of Front panel regarding key operation. Refer to 10.4. Parameter List of Function list regarding key function. ### Concerning Parameters of the Function □ Setting F1, F2, F3 and F4 keys [□ŁHF - 2] to [□ŁHF - 5] [Function] - [Function setting] - [General] - [Other] # 7.5.6. Customizing Sub Display - Use default sub-display pattern, if you want to reset it. - Refer to 10.4. Parameter List of Function list regarding items. ### **Row and Colum Address** Row 0 and 2 is dot matrix display for alphanumerical charactor. Row 1 and 3 is 7-segment display for numerical charactor. Items to append to sub-display | | cha to sab alspia, | | | | |--------|-------------------------------------|----------|-----------|---------| | Number | Name and Number to Display the Item | Row size | Columsize | Figures | | 0 | Not displayed | 0 to 3 | 0 to26 | 1 to12 | | 1 | Material | | | | | 2 | Hopper | | | | | 3 | Target value or final value | | | | | 4 | Free fall | | | | | 5 | Preliminary | | | | | 6 | Optional preliminary | | | | | 7 | Over | | | | | 8 | Under | | | | | 9 | Zero Band | | | | | 10 | Full filling | | | | | 11 | Tare | | | | | 12 | Supplementary flow open timer | | | | | 13 | Supplementary flow close timer | | | | Page 66 AD-4402 | Number | Name and Number to Display the Item | Row size | Columsize | Figures | |--------|-------------------------------------|----------|-----------|---------| | 14 | Automatic Free Fall Compensation | | | | | 15 | Internal reserved | | | | | 16 | Internal reserved | | | | | 17 | Dribble supply at entrance | | | | | 18 | Medium supply at entrance | | | | | 19 | Accumulated weight | | | | | 20 | Accumulation counts | | | | | 21 | Recipe , r [ adE | | | | | 22 | Accumulated weight for recipe mode | | | | | 23 | Accumulation counts for recipe mode | | | | ### Concerning Parameters of the Function Setting sub-display [Function] - [Function setting] - [General] - [Sub-display] # 7.5.7. Graphic Display □ Use to display a bar-graph in the sub-display. Example: ### Concerning Parameters of the Function Using bar graph display □ Selecting ratio of graph display # 7.5.8. Accumulation Operation Accumulate weight data and weighing count of each material code or recipe code. ### Concerning Parameters of the Function □ Using F1 ~ F4 key for accumulation [□ŁHF - 2] to [□ŁHF - 5] [Function] - [Function setting] - [General] - [Other] Using the I/O terminals for accumulation [ $ln \bar{F}$ -nn] nn: terminal number of the I/O. [Function] - [Function setting] - [Control I/O] - [Input] Using parallel terminals for accumulation [05 F-nn] nn: terminal number of the option. n: slot number installed the option. [Function] - [Function setting] - [slot n] - [OP-05] # 7.5.9. Undoing Accumulation Operation Assign a operation input to undo the last result. Refer to 10.4. Parameter List of Function list regarding key function. # 7.5.10. Clearing (Deleting) Accumulation Data - Accumulation data can delete (clear) using preset operation input. - □ There are four types of clearing the data. - Assign a operation input to undo the last result on the function list. Refer to 10.4. Parameter List of Function list regarding key function. Page 68 AD-4402 # 7.5.11. Error Message and Alarm - □ When the indicator detects an error in the weighing system, an error message is displayed. - □ When the indicator becomes to preset condition, it is announced with the preset alarm. #### Kind of Alarm and Error SQ.ERR There is the following priority. Weighing sequence error < Zero error < Alarm 1 < Alarm 2 ZR. ERR ALARM 1 ALARM 2 | Kind | No. | Description | | | |----------|---------------------------------------------------------------|---------------------------------------------------------------|--|--| | | | n the weighing can not continue, message is displayed and the | | | | | sequence is stoped. Cope with cause and restart the weighing. | | | | | | 0 | The weighing sequencei stoped. | | | | | | Cope with cause and restart the sequence. | | | | | 1 | Safety check can not complete. | | | | | | Check the safety. | | | | | 2 | Under weight or over weight. | | | | | | Compensate weight and restart. | | | | | 3 | There is conflict in setpoint | | | | Weighing | 3 | Check setpoint | | | | | 4 | Time over of batch weighing. | | | | error | 4 | Check the gate and remains of hopper mat. | | | | SQ.ERR | 5 | Time over of discharge. | | | | | | Check the discharge gate. | | | | | 6 | The remain is not enough to weigh it. | | | | | O | Add the material. | | | | 7 | 7 | When the batch is started, the weight is full already. | | | | | , | When the batch is started, the weight is full already. | | | | | 8 | Nozzle is touched to hopper. | | | | | | Check the nozzle. | | | | | 9 | There is not tare (vessel) on the weighing pan. | | | | Kind | No. | Description | | | |-------------------------------------|---------------------------------------------|------------------------------------------------------------|--|--| | | Whe | n weighing value can not set to zero with re-zero or tare, | | | | Zero error | mes | message is displayed. | | | | ZR.ERR | 0 | Dispaly can not be zeroed by zero compensation. | | | | | 1 | Dispaly can not be zeroed by tare operation. | | | | | Whe | n weighing value is outof range and emergency stop is | | | | Alarm 1 | perfo | prmed, the symbol is displayed. | | | | ALARM 1 | 1 | Weighing value is out of range. | | | | | 9 | Emergency stop is performing. | | | | | It can not wegh. Check the weighing system. | | | | | Example: loadcell cable, connctors. | | | | | | | 1 | A/D converter is positve over counts. | | | | Alarm 2 | ı | Check the loadcell cable. | | | | ALARM 2 | 2 | A/D converter is negative orver counts. | | | | | | Check the loadcell cable. | | | | | 4 | RAM error. | | | | | 4 | Check backup battery | | | Page 70 AD-4402 #### **Graphic Status Indicator** 7.5.12. □ The indicator can display weighing status, result on the graphic indicator. ### Concerning Parameters of the Function Using graphic indicator [SubF - 5] Activity indicator [Function] - [Function setting] - [General] - [Sub display] #### **Memory Backup** 7.5.13. □ The indicator has two kinds of memory. Flash memory The memory is used to store the important data without power supply that the count of re-writing them is few. Life of re-writing them is approximately 100,000 times or more. Data example: Calibration data, Function data Backuped RAM The memory is used to store temporary data that the count of re- writing them is many. Life of battery is approximately 10 years at 25 ℃, normal use Data example: Tare value, accumulation data, re-zero data □ When re-writing data, the sequence is stopped. Material code and recipe code can store in flash memory or backup RAM. ### Concerning Parameters of the Function Selecting the memory for material code or recipe code [0:HF - 1 1] Save data [Function] - [Function setting] - [General] - [Other] # 8. Interface ## 8.1. Control I/O Function Input terminals 11 lines that can select the function Output terminals 11 lines that can select the function Open corrctor transister ### Input terminal | | Maximum | typ. | |-----------------------------|---------|--------| | Input open valtage | 14V DC | 8 V DC | | Input drive current | 5 mA | 3 mA | | Saturation tralance voltage | 2 V DC | | Output terminal | | Maximum | |-----------------------------|----------------| | Output valtage | 40 V DC | | Output current | 50 mA | | Saturation trelance voltage | 1.5 V at 50 mA | # 8.1.1. Interface circuit Page 72 AD-4402 ### The function assigned to terminals The function of the terminal can assign arbitrarily. Refer to 10.4. Parameter list of the Function list # 8.1.2. Timing Chart ### **Caution** Keep the delay time to avoid mis-operation and noise. Set the Communication mode in $[ \exists \ F - \exists ]$ [without 5]. The transmission of BCD data synchronizes with displaying it in the following modes. Stream mode, auto print mode, manual print mode and accumulation print. # X ### 8.2. Built-in RS-485 Interface - The RS-485 interface can use command to control the indicator. The interface can read weighing data or parameters or store parameter to the indicator. - □ The interface can connect max. 32 units and a personal computer in a communication cable. - These unit is specified by address appended to the command. Transmission system EIA RS-485, Asynchronous, bi-directional, half-duplex Data length 7 bis ot 8 bits Start bit 1 bit Parity bit Odd, Even, not used Stop bits 1 bit, 2 bits Baud rate 600 bps, 12000 bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps, 38400 bps Line 2 wires (2-balanced wires) Connection Max. 32 units Character code ASCII code Terminator CR, CR LF ### The way of Use and Note - □ When use terminator, connect between SDA and SDB terminals with accessory resister. - □ If there is not signal ground at host computer, it is not necessry to use the SG terminal. - □ If the shield cable is used, connect the FG teminal to shield line. - When connecting to RS-232C, Use AD-7491 or converter of RS-232C/ RS-485 on market. - Use multi-droped connection for command mode. Do not use multi-droped connection in stream mode or jet stream mode. ### 8.2.1. Connection **Terminals** Interface Circuit Page 74 AD-4402 # 8.2.2. Settings of Parameters Refer to the 10.4. Parameter list of Function list. # 8.2.3. Timing Chart - Keep delay time above 0.5 ms between last response and next command. - □ Set response time (tr). [r5 F-9] - □ Make long delay time, when there is noise. - □ Hi-Z: Hi impedance ### **Communication Modes** □ There are the following modes. #### **Stream Mode** The data is output at every update of display. If the data can not output due to slow baud rate completely, data is output at next update. #### **Auto Print Mode** The data is printed at batch finish and recipe finish automatically. #### **Accumulation Print Mode** When accumulating it or canceling the last result, the result of batch finish and recipe finish is printed. #### **Manual Print Mode** When the preset print key or terminal is pressed, data is output. #### **Command Mode** The mode is used to control the indicator, to store parameters and to read data or parameter. #### **Jet Steam Mode** The weighing data and state is output on 100 time/s. Data is gross or net value. The format is the same as command RGRS or RNET. Set baud rate to 38400 bps. When slow baud rate is 1/2<sup>n</sup> times 38400 bps, the same data is output 2<sup>n</sup> times Page 76 AD-4402 ### 8.2.4. General Data Format This format is used at command mode and jet stream mode. Command is replayed. The replayed command is 4 characters #### Code Material code or recipe code number. The code is 4 characters ### Weighing data Data uses BCD code, is 7 figures and is not include decimal point. When data is negative, minus sign is appended to the head. ### **Terminator** CR or CR + LF CR: **0D**h, LF: **0A**h ### 8.2.5. A&D Data Format The format is used for stream mode, auto print mode and accumulation print. The format is compatible to the indicator AD-4325. ### Header 1 ST Stable US Unstable LO Out of range #### Header 2 GS Gross value NT Net value TR Tare value ### Weighing data Data uses BCD code, is 7 figures and is include decimal point. When data is negative, minus sign is appended to the head. When data is out of range, all numerical characters are space (20h). #### Unit Kg, g or t #### **Terminator** CR or CR + LF CR: **0D**h, LF: **0A**h ### 8.2.6. Address Set the address in [-5 F-8]. 32 indicators can connect to a computer. There is not relation between communication mode [-5 F-2] and address [-5 F-8]. ### **Broadcast Address** When address @oo is used, send a command to all indicators in the same time. Exmaple: Page 78 AD-4402 # 8.2.7. Command List ### **Monitor Commands** | Name | Code | Description | | |--------------------------------------------|------------|----------------------------------|-----| | Road weighing value | RDSP | | | | Read weighing value | RW | | | | Read gross data | RGRS | | | | Read net value | RNET | | | | Read Tare value | RTAR | | | | Pood weighing result | RFIN | | | | Read weighing result | RF | | #1 | | Pood cotnint or | RSPTxxxx | | | | Read setpint or Read comparison parameters | RSPT#### | | | | ixeau companson parameters | RSxx | | #1 | | Read material code | RCODxxxx | To read the details of the code. | # 1 | | Read recipe code | RRCDxxxx | To read the details of the code. | # 1 | | Read accumulation data | RTTLxxxx | | | | of material code | KIILXXX | | | | Read accumulation data | RRTLxxxx | | | | of recipe code | ININILXXXX | | | | Read error code | RERR | | | xxxx: Material code or recipe code. #1: Compatible command to AD4401, AD-4403 and AD4325. ### Write Commands | Name | Code | Description | |-----------------------------|----------|----------------------------------------| | | WSPTxxxx | | | Store setpoints | WSPT%%%% | | | | SSxx | #1 | | Store comparison parameters | SA | To store optional preliminary and zero | | | SA | band. #1 | | Store material code | WCODxxxx | To store all parameters of the code. | | Store recipe code | WRCDxxxx | To store all parameters of the code. | xxxx: Material code or recipe code. ####: When reading an active material code or recipe code during the sequence, place four space codes (ASCII **20**h). %%%: When storing new parameters to material code or recipe code that is recalled as next code in the sequence, place four space codes (ASCII **20**h). #1: Compatible command to AD4401, AD-4403 and AD4325. # Control Commands | Name | Code | Description | | |---------------------------|----------|------------------------------------|----| | | CZER | ' | | | Make zero display | MZ | | #1 | | Make zero clear | CCZR | | | | T | CTAR | | | | Tare | MT | | #1 | | T | CCTR | | | | Tare clear | СТ | | #1 | | Characte areas display | CGRS | | | | Change to gross display | MG | | #1 | | Observation at displace | CENT | | | | Change to net display | MN | | #1 | | Call reaterial and | CCODxxxx | | | | Call material code | CCxx | | #1 | | Call recipe code | CRCDxxxx | | | | | CACC | | | | Accumulation command | AM | | #1 | | Consider the first one if | CCAC | | | | Cancel the last result | CA | | #1 | | Databases | CBAT | | | | Batch start | BB | | #1 | | Dischause start | CDSC | | | | Discharge start | BD | | #1 | | Recipe start | CBLD | | | | Mixture start | CMIX | | | | Re-start | CRES | | | | Stop | CHLT | | | | Emargan av etan | CSTP | | | | Emergency stop | НВ | | #1 | | Clear accumulation data | CDTLxxxx | Accumulation data is set to 0. | | | of material code | DTxx | Accumulation data is set to 0. | #1 | | Clear accumulation data | CETL | All accumulation data is set to 0. | | | of all material code | ET | All accumulation data is set to 0. | #1 | | Clear accumulation data | CDDT | A commutation data is set to 0 | | | of recipe code | CDRTxxxx | Accumulation data is set to 0. | | | Clear accumulation data | CEDT | All accumulation data is set to 0. | | | of all recipe code | CERT | All accumulation data is set to 0. | | | Reset an error | CRER | | | | No operation | CNOP | | | xxxx: Material code or recipe code. #1: Compatible command to AD4401, AD-4403 and AD4325. Page 80 AD-4402 Response Error Code | Response | Description | Note | |----------|---------------------------------------|----------------------------| | ?E | The format of command is not correct. | When address is used, | | VE | The data of command is not correct. | address is appended to the | | IE | Indicator is busy. | response, too. | ### ASCII Code for AD-4402 The characters are special code for the name of material code and recipe code. Therefor, some characters are not the same as U.S. code. | | Lower bits | | | | | | | | | |------------|------------|----|---|-------|----------|---|---|-------|---| | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 0 | | | Space | 0 | @ | Ρ | Space | р | | | 1 | | | ! | 1 | Α | Q | а | q | | | 2 | | | " | 2 | В | R | b | r | | | 3 | | | # | 3 | С | S | С | S | | | 4 | | | \$ | 4 | D | Τ | d | t | | | 5 | | | % | 5 | Е | J | е | u | | | 6 | | | & | 6 | F | > | f | V | | Upper bits | 7 | | | 1 | 7 | G | V | g | W | | Opper bits | 8 | | | ( | 8 | Н | Χ | h | X | | | 9 | | | ) | 9 | I | Υ | i | У | | | Α | LF | | * | • • | J | Ζ | j | Z | | | В | | | + | • | K | [ | k | { | | | С | | | , | <b>'</b> | L | ¥ | | | | | D | CR | | - | II | М | ] | m | } | | | Е | | | | ^ | N | ٨ | n | | | | F | | | / | ? | 0 | 1 | 0 | 0 | # 8.3. Built-in Current Loop Output Transmission system EIA RS-232C, Asynchronous, bi-directional, half-duplex Current 1 = 20 mA, 0 = 0 mA, external DC current source Data length 7 bis Start bit 1 bit Parity bit Even Stop bits 1 bit Baud rate 600 bps, 12000 bps, 2400 bps Code ASCII code ### 8.3.1. Connection The current loop output has not polarity. Use an external DC current source. Connect the FG terminal when using the shield cable. ## 8.3.2. Communication Modes There are the following modes. #### **Stream Mode** The data is output at every update of display. If the data can not output due to slow baud rate completely, data is output at next update. #### **Auto Print Mode** The data is printed at batch finish and recipe finish automatically. #### **Manual Print Mode** When the preset print key or terminal is pressed, data is output. #### **Accumulation Print Mode** When accumulating it or canceling the last result, the result of batch finish and recipe finish is printed. When canceling the last result, the inverse polarity data is output. Page 82 AD-4402 # 8.3.3. Data Format The format is the same as A&D format of the built-in RS-485. # $\searrow$ # 8.4. BCD Output of Option, OP-01 Output circuit Open collector transistor Output voltage 40 V DC max. Output saturation voltage 0.8 V at 25 mA Input control Contact to ground Input open voltage 5 V DC ±5% Input open voltage 5 V DC $\pm 5\%$ Input current 5 mA max. Threshold voltage 1.5 V max. ### **Terminals** When weighing display, gross display, net display and tare display [ $\square \ |F - \ |$ ] [|I|, |I|, |I|] is used, the function of terminals are as follows: | | , The acca, the famolich of | • • • • • • • • • • • • • • • • • • • • | | | | | |-----|-----------------------------|-----------------------------------------|---------------------|-------|--------|--------| | A1 | 1 | B1 | 2 | Unit | Unit 1 | Unit 2 | | A2 | 4 | B2 | 8 | blank | 0 | 0 | | А3 | 10 | В3 | 20 | kg | 0 | 0 | | A4 | 40 | B4 | 80 | t | 0 | 1 | | A5 | 100 | B5 | 200 | g | 1 | 1 | | A6 | 400 | B6 | 800 | | | | | A7 | 1,000 | B7 | 2,000 | | | | | A8 | 4,000 | B8 | 8,000 | | | | | A9 | 10,000 | B9 | 80,000 | | | | | A10 | 40,000 | B10 | 80,000 | | | | | A11 | 100,000 | B11 | 200,000 | | | | | A12 | 400,000 | B12 | 800,000 | | | | | A13 | Over | B13 | Positive polarity | | | | | A14 | Stable | B14 | Net | | | | | A15 | Decimal point 0.0 | B15 | Decimal point 0.0 | | | | | A16 | Decimal point 000.0 | B16 | Decimal point 000.0 | | | | | A17 | Unit 1 | B17 | Unit 2 | | | | | A18 | Strobe | B18 | Hold input | | | | | A19 | Common ground | B19 | Common ground | | | | | A20 | Frame ground | B20 | Frame ground | | | | | | | | | | | | # When accumulation weight and accumulation counts [0 | F - l] [5, 6, 7, 8] is used, the function of terminals are as follows:. | A1 | 1 | B1 | 2 | |-----|---------------|-----|-------------------| | A2 | 4 | B2 | 8 | | А3 | 10 | B3 | 20 | | A4 | 40 | B4 | 80 | | A5 | 100 | B5 | 200 | | A6 | 400 | B6 | 800 | | A7 | 1,000 | B7 | 2,000 | | A8 | 4,000 | B8 | 8,000 | | A9 | 10,000 | B9 | 80,000 | | A10 | 40,000 | B10 | 80,000 | | A11 | 100,000 | B11 | 200,000 | | A12 | 400,000 | B12 | 800,000 | | A13 | 1,000,000 | B13 | 2,000,000 | | A14 | 4,000,000 | B14 | 8,000,000 | | A15 | 10,000,000 | B15 | 20,000,000 | | A16 | 40,000,000 | B16 | 80,000,000 | | A17 | Over | B17 | Positive polarity | | A18 | Strobe | B18 | Hold input | | A19 | Common ground | B19 | Common ground | | A20 | Frame ground | B20 | Frame ground | Page 84 AD-4402 # When **recipe code and material code** [ $G \not\vdash F - f$ ] [G] is used, the function of terminals are as follows:. | A1 | Material code at | 1 | B1 | Material code at | 2 | |-----|------------------|----|-----|------------------------|----| | A2 | weighing | 4 | B2 | weighing sequence | 8 | | А3 | sequence | 10 | B3 | | 20 | | A4 | | 40 | B4 | | 80 | | A5 | Referred | 1 | B5 | Referred material code | 2 | | A6 | material code | 4 | B6 | | 8 | | A7 | | 10 | B7 | | 20 | | A8 | | 40 | B8 | | 80 | | A9 | Recipe code at | 1 | B9 | Recipe code at | 2 | | A10 | weighing | 4 | B10 | weighing sequence | 8 | | A11 | sequence | 10 | B11 | | 20 | | A12 | | 40 | B12 | | 80 | | A13 | Referred recipe | 1 | B13 | Referred recipe code | 2 | | A14 | code | 4 | B14 | | 8 | | A15 | | 10 | B15 | | 20 | | A16 | | 40 | B16 | | 80 | | A17 | | | B17 | | | | A18 | Strobe | | B18 | Hold input | | | A19 | Common ground | | B19 | Common ground | | | A20 | Frame ground | • | B20 | Frame ground | | ### When **Error and alarm** $[ \mathcal{C} | \mathcal{F} - \mathcal{C} ]$ $[ \mathcal{C} \mathcal{C} ]$ is used, the function of terminals are as follows:. | A1 | Sequence error | 1 | B1 | Sequence error | 2 | |-----|----------------|-------|-----|-------------------|---| | A2 | number | 4 | B2 | number | 8 | | А3 | | Error | B3 | | | | A4 | | | B4 | | | | A5 | Zero error | 1 | B5 | Zero error number | 2 | | A6 | number | 4 | B6 | | 8 | | A7 | | Error | B7 | | | | A8 | | | B8 | | | | A9 | Alarm 1 number | 1 | B9 | Alarm 1 number | 2 | | A10 | | 4 | B10 | | 8 | | A11 | | Error | B11 | | | | A12 | | | B12 | | | | A13 | Alarm 2 number | 1 | B13 | Alarm 2 number | 2 | | A14 | | 4 | B14 | | 8 | | A15 | | Error | B15 | | | | A16 | | | B16 | | | | A17 | | | B17 | | | | A18 | Strobe | | B18 | Hold input | | | A19 | Common ground | | B19 | Common ground | | | A20 | Frame ground | | B20 | Frame ground | | ### **Communication Modes** □ There are the following modes. #### **Stream Mode** The data is output at every update of display. If the data can not output due to slow baud rate completely, data is output at next update. #### **Auto Print Mode** The data is printed at batch finish and recipe finish automatically. #### **Manual Print Mode** When the preset print key or terminal is pressed, data is output. #### **Accumulation Print Mode** When accumulating it or canceling the last result, the result of batch finish and recipe finish is printed. When canceling the last result, the inverse polarity data is output. #### Jet Steam Mode The weighing data and state is output on 100 time/s. Data is gross or net value. The format is the same as command RGRS or RNET. Set baud rate to 38400 bps. When slow baud rate is 1/2<sup>n</sup> times 38400 bps, the same data is output 2<sup>n</sup> times ### **Timing Chart** When **normal output** [ $\square \ | F - \ \exists$ ] [without 5] is used ### When **normal output** [ [ | F - 3] [without 5] is used Page 86 AD-4402 # 8.5. Relay Output of Option, OP-02 Rated load 250 V AC, 3 A 30 V DC, 3 A Current at common terminal Max. 10A DC Minimum load 100 mV 100 μA Life 20,000,000 times or more at no load 100,000 times or more at rated load ### Connection ### Terminal List Refer to 10.4. Parameter list of the function list. # 8.6. RS-422/485 Interface of Option, OP-03 - □ The RS-422/485 interface can use command to control the indicator. The interface can read weighing data or parameters or store parameter to the indicator. - □ The interface can connect max. 32 units and a personal computer in a communication cable. - These unit is specified by address appended to the command. - □ TS-485 can use 2-wire or 4- wire. - □ The command and format is the same as the built-in RS-485. Transmission system EIA RS-422 / 485, Asynchronous, bi-directional, half-duplex Data length 7 bis ot 8 bits Start bit 1 bit Parity bit Odd, Even, not used Stop bits 1 bit, 2 bits Baud rate 600 bps, 12000 bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps, 38400 bps(Jet stream mode) Line RS-422: 4 wires RS-485: 2 wires or 4 wires Connection Max. 32 units Character code ASCII code Terminator CR, CR LF ### Caution ### The option can install either OP-03 or OP-04 Page 88 AD-4402 ### RS-485 2 Wire Connections ### **Settings of Parameters** Refer to 10.4. Parameter list of the function list. ### Timing Chart - □ Keep delay time above 0.5 ms between last response and next command. - □ Set response time (tr). [03 F-9] < tr < [03 F-9] + 50 ms - Make long delay time, when there is noise. - Make 4 ms or more from output finish to receiveing next command - □ Hi-Z: Hi impedance Page 90 AD-4402 # 8.7. RS-232C Interface of Option, OP-04 - □ The RS-232C is used to connect to the DEC (modem). - □ The command and parameters of RS-232C is the same as the built-in RS-485. Transmission system EIA RS-232C, Asynchronous, bi-directional, half-duplex Data length 7 bis ot 8 bits Start bit 1 bit Parity bit Odd, Even, not used Stop bits 1 bit, 2 bits Baud rate 600 bps, 12000 bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps ### **Caution** The option can install either OP-03 or OP-04 ### Connection ### **Settings of Parameters** Refer to 10.4. Parameter list of the function list. # 8.8. Parallel I/O of Option, OP-05 - □ Use the option to extend I/O terminals - □ The function, settings, interface circuit and timing chart of the option is the same as buit-in I/O terminal. Input control Contact to ground Input open voltage 7 ~ 11 V DC Input current 5 mA max. Input threshold voltage 2 V max. Output circuit Open collector transistor Output voltage 40 V DC max. Output saturation voltage 1.5 V at 50 mA ### Connection | A1 ~ A16 | Input terminals | |----------|------------------| | A17 | | | A18 | Input common | | A19 | | | A20 | Frame ground | | B1 ~ B16 | Output terminals | | B17 | | | B18 | Output common | | B19 | | | B20 | Frame ground | ### Terminal List Refer to 10.4. Parameter list of the function list. ### Caution Do not assign the same function to plural input teminals and keys. Page 92 AD-4402 # 8.9. Analog Output of Option, OP-07 □ The option outputs DC current that is proportion to the display value. It is adjusted by 4 mA output at zero display and 20 mA output at full scale. Analog output Contact to ground Output voltage 11 V DC min. Adaptable resistance $0 \Omega \sim 500 \Omega$ Update ratio 100 times per second with Sampling frequncy divider [GEnF- 3] Zero temperature coefficient $\pm 150 \text{ ppm/}^{\circ}\text{C}$ max. Span temperature coefficient $\pm 150 \text{ ppm/}^{\circ}\text{C}$ max. Non-linearlity 0.1% max. Resolution smaller value of either 1/40000 or resoution of display ### **Settings of Parameters** Refer to 10.4. Parameter list of the function list. # 9. Maintenance ## 9.1.1. Basic Operation To enter the maintenance Press and hold the **ENTER** key and press the **+** key in weighing mode. Select menu maintenance using the the key and the ENTER key. To select an address of the parameter The +, SHIFT + +, ENTER, ESC keys. To change the parameter The ♣, SHIFT + ♣, Alphanumerical, ENTER, ESC keys. To exit the mode (To return to weighing mode) The **ESC** key. # 9.2. Monitor Mode □ The monitor mode is used to check the indicator during the weighing sequence. # 9.2.1. Monitoring Control I/O Function Use to monitor the status of the I/O terminals. When [GEnF - I] is slow, it may not display all data. CONTROL BII BII BII BII COutput terminal A1 Output terminal B1 # 9.2.2. Monitoring Built-in RS-485 Interface □ The current communication data are displayed. Page 94 AD-4402 # 9.2.3. Monitoring Built-in Current Loop Output The current communication data are displayed. # 9.2.4. Monitoring A/D Converter The current A/D converter data are displayed. # 9.2.5. Monitoring BCD Output of OP-01 □ The current BCD output data are displayed. # 9.2.6. Monitoring Relay Output of OP-02 □ The status of the current relay outputs is displayed. # 9.2.7. Monitoring RS-422/485 Interface of OP-03 The current communication data are displayed. # 9.2.8. Monitoring RS-232C Interface of OP-04 □ The current communication data are displayed. # 9.2.9. Monitoring Parallel I/O of OP-05 □ The status of current parallel I/O is displayed. # 9.2.10. Monitoring Analog Output of OP-07 The current communication data are displayed. Page 96 AD-4402 ### 9.3. Test Mode - □ The test mode is used to check the indicator and weighing system with test signal output. - □ When the test mode is used, the weighing sequence is stopped. ### Caution □ The test mode outputs the test signal. Therfore, the devices connected to system are influenced and it may cause mis-operation. # 9.3.1. Testing Control I/O Function Test the output of the I/O terminal. An active output of level "1" shifts for each terminal. # 9.3.2. Testing Built-in RS-485 Interface □ When pressing the **ENTER** key each time, a test data "ST,GS,+0000000kg CR LF" is output. # 9.3.3. Testing Built-in Current Loop Output □ When pressing the **ENTER** key each time, a test data "ST,GS,+0000000kg CR LF" is output. ## 9.3.4. Testing A/D Converter - The A/D converter data is displayed. - □ When pressing the **ENTER** key, a test voltage can be input to the A/D converter. # 9.3.5. Testing BCD Output of OP-01 □ Test the output of the terminal. An active output of level "1" shifts for each terminal. # 9.3.6. Testing Relay Output of OP-02 □ Test the output of the terminal. An active output of level "1" shifts for each terminal. # 9.3.7. Testing RS-422/485 Interface of OP-03 □ When pressing the **ENTER** key each time, a test data "ST,GS,+0000000kg CR LF" is output. Page 98 AD-4402 # 9.3.8. Testing RS-232C Interface of OP-04 □ When pressing the ENTER key each time, a test data "ST,GS,+0000000kg CR LF" is output. # 9.3.9. Testing Parallel I/O of OP-05 □ Test the output of the terminal. An active output of level "1" shifts for each terminal. # 9.3.10. Testing Analog Output of OP-07 - □ When pressing the 1 key, output current is increases. - □ When pressing the **2** key, output current is decreases. # $\mathbf{X}$ # 9.4. Initializing Parameters - □ The function initializes the parameters stored in the indicator. - □ The parameters are stored in the flash memory and backup RAM. ### Caution - □ There are the kinds of reset function that must re-calibrate the indicator - □ Note the parameters where is stored in. ### Kinds of intialization mode | Vindo of intiplication | Description | | | |-------------------------------------------|------------------------------------------------------------------------------|--|--| | Kinds of intialization | Description | | | | Initializing RAM | The backup RAM is reset. Zero point of gross display, tare value zeroes. | | | | | value Zeites. | | | | Initializing material code or recipe code | Material code and recipe code is reset. | | | | | It is we get no wound to see of five stice list in the floor and an arrange. | | | | Initializing function list | It is reset parameters of function list in the flash memory. | | | | Initializing caribration data | It is reset parameters of calibration data in the flash | | | | Illitializing Cambration data | memory. If this function is used, calibrate the indicator. | | | | Initializing all parameters | It resets all parameters. | | | The location of the parameters and objects of intialization mode | | | | | Material code | | Recipe<br>code | | | | | |--------------------|-------------------------------------------|-----------------------|------|---------------|---------------|-------------------|-------------|-------------------|---------------|------------------| | | | | Zero | Tare | Material code | Accumulation data | Recipe code | Accumulation data | Function list | Calibration data | | Backup RAM | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | LOCa | Location Flash memory | | | | 0 | | 0 | | 0 | 0 | | | Initia | lizing RAM | 0 | 0 | | | | | | | | Intialization mode | Initializing material code or recipe code | | | | 0 | 0 | 0 | 0 | | | | | Initializing function list | | | | | | | | 0 | | | | Initializing caribration data | | | | | | | | | O | | | Initia | lizing all parameters | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ### Prucedure ### Caution - Do not intialize them while any operation. Cut off the power supply of other system. When initializing the indicator, the output may change. - When intializing the indicator, do not turn off it before it is resetted. ### To enter intialization - Step 1 Press and hold the **ENTER** key and press the \*\* key to display the menu in a weighing mode. - Step 2 Select the menu "Initialization" using the \* key, ENTER key and ESC key. Category address: [Maintenance] [Initialization] ### To enter intialization Step 1 Select the menu intialization using the \*\* key, ENTER key and ESC key. Menu: RAM / Code / Function / CAL / All - Step 2 Select "yes" to initialize them using the + key, ENTER key. - Step 3 Wait for the indicator resetted. # 9.5. Remote Operation - □ The mode can read and write the parameters of function list, data of material code and recipe code and calibration data. - □ The build-in RS-485, RS-422/485 (OP-03) or RS-232C (OP-04) is used for the remote operation. - □ It is necessary to install the **remote setup program** in the computer or controller before use. Refer to http://www.aandd.co.jp - Refer to the instruction manual for the details of the program. ### Caution Do not down load data during a weighing operation. Remove all connections to prevent a irregular operation. Maintain the power supply during the remote operation. ### Entering to the Remote Operation Mode - Step 1 Press and hold the **ENTER** key and press the **★** key. - Step 2 Press the \*\* key to select menu remote operation. And press the **ENTER** key. ### Advise The following RS-232C to RS-485 converter can use. AD-7491, other converter on the market. Page 102 AD-4402 # **10. Function List** - □ The function list stores parameters to control the indicator. - □ The parameter is stored in an item without power supply. - □ An item is classified by a category address, and is classified by an item number. Refer to "10.1.2. Outline of the Function List". - □ The category address has a symbol for the 7-segments display - □ There are two kind of the function mode to operate the function list. - Parameter settings The mode is used to change the parameter. - Referring Parameters The mode is used to refer the parameter in the weighing sequence. ### Example of an item: Category address: [Function] - [Function setting] - [General] - [Weighing] ### Caution When entering Parameter settings of the function mode, the current weighing sequence are stopped. #### 10.1.1. Operation Keys To enter the function list Press and hold the **ENTER** key and press the + key in weighing mode. Select menu Function using the + key and the **ENTER** key. To select an address of the parameter The +, SHIFT + +, ENTER, ESC keys. To change the parameter The +, SHIFT + +, Alphanumerical, ENTER, ESC keys. To store it and exit the function list (To return to weighing mode) The **ESC** key. # 10.1.2. Outline of the Function List | Category Addr | ess | Start Item | | | |-----------------------------------------------|-------------------------|--------------------------------|--|--| | Function | | | | | | Function | reference | | | | | Genera | <b>a</b> 1 | | | | | Wei | ght | GEnF- 1 | | | | Sub | display | Sub F I | | | | Oth | er | othF- | | | | Se <u>que</u> | nce | | | | | Bas | ic | 59 F- I | | | | Con | rtrol | 59 F-11 | | | | Tim | er | 59 F-31 | | | | | Foint (Compared value) | 59 F-51 | | | | Tal | i (Accumulation) | 59 F-6 I | | | | Saf | ety | 59 F-71 | | | | | ol I/O function | | | | | Inf | | In F- I | | | | | :Fut | Outf- I | | | | | l interface | | | | | | rent Loop | EL F- I | | | | | 485 | r5 F- 1 | | | | Option | | | | | | <u> </u> | | | | | | <u> </u> | | Refer to Options in this page. | | | | <u> </u> | | | | | | hunction | setting | | | | | The sar | me as the "Function ref | ierence". | | | | | | | | | ## **Options** | <u> </u> | IUI | 13 | | | |----------|------|-------------------|------------|---------| | Ca | ateg | ory Address | Start Item | | | Op | tic | on | | | | | 51 | ್ದು nn nn: Slot r | the option | | | | | BCD output, | OP-01 | 0 F- | | | | Relay output, | OP-02 | 02 F- 1 | | | | RS-422/485, | OP-03 | 03 F- I | | | | RS-232C, | OP-04 | 04 F- 1 | | | | Parallel output, | OP-05 | 05 F- I | | | | Analog output, | OP-07 | 07 F- I | Page 104 AD-4402 # $\mathbf{X}$ # 10.2. Referring Parameters - Use the mode to refer the parameter in the weighing sequence. - □ The mode can change the parameters concerning the digital filter and weighing sequence timers in the weighing sequence. ``` [GEnF- 2] Digital filtering [Function] - [Function] - [General] - [Weighing] [GEnF- 3] Sampling frequency divider proportion [Function] - [Function] - [General] - [Weighing] [59 F-3 | to [59 F-48] Weighing sequence timers [Function] - [Function] - [Sequence] - [Timer] ``` # 10.3. Parameter Settings - Use the mode to change the parameter. - □ The weighing sequence and the I/O interfaces are stopped and closed during this mode. - New parameters have effective after returning to weighing mode. # **10.4.** Parameter List Category address: [Function] - [Function setting] - [General] - [Weighing] | | icas. [i directorij [i | runction settingj – [Generalj – [Wei | | 1 | |----------------------------------------|----------------------------------------------|----------------------------------------------------------|--------------|--------------| | Category | | <b>D</b> | Range | 5 | | address | Name | Descriptions | and | Default | | symbol | | | choices | | | | Diaples, refresh rete | 1: five times per second | 1 to 2 | 2 | | GEnF- 1 | Display refresh rate | splay refresh rate 2: ten times per second | | | | | | 0: Not used Select 3dB band for two | | | | | | 1: 11 Hz low pass filters. | | | | GEnF- 2 | Digital filter | <u>'</u> | | | | | | 2: 8.0 Hz | 0 to 99 | | | | | 3: 5.6 Hz A/D converter | | | | | | 4: 4.0 Hz | | 4 8 | | ם ביווי ב | Digital filler | 5: 2.8 Hz <b>▼</b> | | 4 0 | | | | 6: 2.0 Hz First filter | | | | | | 7: 1.4 Hz | | | | | | | | | | | | Second filter | | | | | O | 9: 0.7 Hz | | | | GEnF- 3 | Sampling | Use to decrease the cut-off frequency of digital filter. | 0 to 10 | 1 | | | freqeuncy divider | 0 10 10 | - | | | GEnF- Y | Stability detection | | 0.0 to | 1.0 <b>s</b> | | טנחר- א | time satblility. | | | 1.0 5 | | | Stability detection 0.0 : stable at anytime. | | 0.0 to | | | GEnF- 5 | band width | | 9.9 <b>d</b> | 2.0 <b>d</b> | | | Daria Wiatri | The renge to zero grees display | 3.3 <b>u</b> | | | | 7 D | The range to zero gross display. | 0 to 30 % | 5 % | | 66nF- 6 | Zero Range | Center of range is zero calibration. | | | | | | Unit: percentage of weighing capacity. | | | | GEnF- 7 | Zero tracking time | The function automatically traces the | 0.0 to | 0.0 <b>s</b> | | ו וווווווווווווווווווווווווווווווווווו | Zero tracking time | weighing deviation at nearly zero | 9.9 <b>s</b> | 0.0 3 | | | Zero tracking band | point and keeps zero display of gross | 0.0 to | | | GEnF- 8 | width | display. | 9.9 <b>d</b> | 0.0 <b>d</b> | | | Widaii | When unstable weghinng, whether zero | 0.0 4 | | | | Tare and zero | 5 5 | | | | GEnF- 9 | compensation at | or tare command is used. | 0 to 1 | 1 | | | unstable status | 0 :Disabled | | | | | | 1 :Enabled | | | | | | When negative weghinng, whether tare | | | | | Tare at negative | command is used. | 0.45-4 | 1 | | GEnF - 10 | GROSS weight | 0 :Prohibition to tare. | 0 to 1 | | | | | 1 : Permission to tare. | | | | | | Preset tare of material code | | | | | Droot to a | | 0.45.4 | | | GEnF-11 | Preset tare | 0 :Not used | 0 to 1 | 1 | | | | 1:Use | | | | | | 1: If tare value of material code is zero, | | | | | Preset tare =0 | the last tare value is used. | 1 to 2 | | | GEnF - 12 | choice | 2: If tare value of material code is zero, | | 1 | | | 33.33 | Tare is set to zero. | | | | | | . 5.0 10 001 10 20101 | | | | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------| | GEnF- 13 | Clear mode at power ON | The action at turning on indicator. First bit: Zero Second bit: Zero clear Third bit: Tare Fourth bit: Tare clear 0: Not used 1: Use | 0000 to<br>1111 | 0000 | | 6EnF - 14 | Hold function | 1: Hold 2: Hold at batch finish 3: Hold at recipe finish | 1 to 3 | 1 | s : secondd: digit Category address: [Function] - [Function setting] - [General] - [Sub-display] | Category address symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------|------------------|-----------------------------------|-------------------------|---------| | 5UbF - 1 | Weighing display | D: Basic format Custom format | 0 to 1 | 0 | When arranged format is used (When [5UbF - I][I]), set items to be displayed in the sub-display. Item index number to be displayed. 32 items of name and number can be set in maximum. At **odd**: Input the name of the selected item using alphanumeric characters. At **even**: Input the number concerning the item. | Number | Name and Number to Display the Item | Row size | Columsize | Figures | |--------|-------------------------------------|----------|-----------|---------| | 0 | Not displayed | | | | | 1 | Material | | | | | 2 | Hopper | | | | | 3 | Final | | | | | 4 | Free fall | | | | | 5 | Preliminary | | | | | 6 | Optional preliminary | | | | | 7 | Over | | | | | 8 | Under | | | | | 9 | Zero Band | | | | | 10 | Full (full filling) | 0 to 3 | 0 to26 | 1 to12 | | 11 | Tare | | | | | 12 | Supplementary flow open timer | 0 10 3 | 0 1020 | 1 1012 | | 13 | Supplementary flow close timer | | | | | 14 | Automatic Free Fall Compensation | | | | | 15 | Internal reserved | | | | | 16 | Internal reserved | | | | | 17 | IDF at entrance sequence | | | | | 18 | MDF at entrance sequence | | | | | 19 | Accumulated weight | | | | | 20 | Accumulation counts | | | | | 21 | Recipe , r [ ad [ | | | | | 22 | Accumulated weight for recipe mode | | | | | 23 | Accumulation counts for recipe mode | | | | Category address: [Function] - [Function setting] - [General] - [Sub-display] | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------------|----------------|--------------------------------|-------------------------|---------| | 5UbF- 2 | Recipe display | Basic format Custom format | 0 to 1 | 0 | When arranged format is used (When [5UbF - 2][I]), set items to be displayed in the sub-display. Item index number to be displayed. 32 items of name and number can be set in maximum. At **odd**: Input the name of the selected item using alphanumeric characters. At even: Input the number concerning the item. | Number | Name and Number to Display the Item | Row size | Columsize | Figures | |--------|-------------------------------------|----------|-----------|---------| | 0 | Not displayed | | | | | 22 | 22 Total weight for recipe mode | | 0 to26 | 1 to12 | | 23 | Total counts for recipe mode | | | | Category address: [Function] - [Function setting] - [General] - [Sub-display] | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------------|------------------------|-----------------------------------------------------------------------------------|-------------------------|---------| | Sub F 1<br>Sub F 2 | Refer to previous pa | ges. | | | | Sub F 3 | Bar graph location | 0: Hide 1: Upper side. 2: Lower side. | 0 to 2 | 0 | | 5ub F 4 | Ratio of graph display | <ol> <li>Gross weight to capacity.</li> <li>Net weight to final value.</li> </ol> | 0 to 2 | 1 | | 5ub F S | Activity indicator | 0: Off (Not used) 1: On (Use) | 0 to 1 | 1 | Category address: [Function] - [Function setting] - [General] - [Others] | <del></del> | ress. [ranceron] [ | anetion settings [General] [oth | 1013] | | |-------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------| | Category | | | Range | | | address | Name | Descriptions | and | Default | | symbol | | | choices | | | othF- I | Key lock | Set the action of each key. Bit 1: F1 key Bit 2: F2 key Bit 3: F3 key Bit 4: F4 key Bit 5: Code recall key Bit 6: Code set key Bit 7: Not defined Bit 8: Zero key Bit 9: Tare key Bit 10: Net / Gross key Bit 11: Not defined Bit 12: Off key 0: Unlock 1: Lock | 0000000<br>00000 to<br>111111<br>11111 | 00000<br>00000<br>00 | | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------| | athF- 2 | F1 key function | <ul> <li>0: Not used</li> <li>1: Display exchange (current weighing / recipe)</li> <li>2: Manual print</li> <li>3: Hold</li> <li>4: Zero clear ( to be zero)</li> <li>5: Tare clear ( to be zero)</li> <li>6: Batch start</li> </ul> | | | | othF- 3 | F2 key function | 7: Recipe start 8: Discharge 9: Mixture 10: Pause 11: Internal reseved 12: Restart 13: Forced batch finish 14: Forced recipe finish | 0 to 24 | 0 | | othF- 4 | F3 key function | <ul> <li>15: Forced discharge finish</li> <li>16: Total command</li> <li>17: Manual free fall compensation</li> <li>18: Cancel the last result</li> <li>19: Error reset</li> <li>20: Clear the total weight and counts for each material code.</li> </ul> | | | | othF- 5 | F4 key function | <ul><li>21: Clear the total weight and counts for each recipe code.</li><li>22: Clear all total data for material codes.</li><li>23: Clear all total data for recipe codes.</li><li>24: Clear all total data of material code and recipe code.</li></ul> | | | | othF- & | Parallel I/O Buzzer | Buzzer output is 2 s. Beep is 0.2 s. It is used in Contolol I/O, OP-02, OP-05. Bit 1: Beep (Click sound) Bit 2: Over Bit 3: OK Bit 4: Under Bit 5: Zero band Bit 6: Bach finish Bit 7: Discharge finish Bit 8: Recipe finish Bit 9: Mixture finish Bit 10: Weighing sequence in process Bit 11: Full (Full filling) Bit 12: Stable condition Bit 13: Weighing sequence error Bit 14: Alarm 1 Bit 15: Alarm 2 Bit 16: Zero error 0: Off (Not used: Open) 1: On (Use: Short or Open) | 0000000<br>0000000<br>00<br>to<br>1111111<br>1111111 | 10000<br>00000<br>00000<br>0 | | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------| | oŁhF- 7 | Tare Header | Use for the current loop out put or RS-485 of serial interface. This parameter can not be used in command mode and stream mode. O: All header of tare is "TR" 1: Use "PT" of preset tare header and "T" of tare header | 0 to 1 | 0 | | othF-8 | Preset tare printing with net weight | Use for the current loop output or RS-485 interface at net display. This parameter can not use in command mode and stream mode. 0: No (Not output preset tare) 1: Yes (To output preset tare) | 0 to 1 | 0 | | othF- 9 | Printing when unstable condition | Use for the current loop output or RS-485 interface at "out of range" or "unstable condition". 0: No 1: Yse | 0 to 1 | 0 | | oŁhF- 10 | Repeat lock | The function to avoid key operation error. Bit 0: Total Bit 1: Manual print operaton 0: Unlock 1: Lock (Cancel duplicated command input) | 00 to 11 | 00 | | oEhF-II | Save data | Select a backup method of material code and recipe code. 0: Store in RAM 1: Store in flash memory | 1 to 2 | 1 | Category address: [Function] - [Function setting] - [Sequence] - [Basic] | | iness: [i arrectorij [i | unction setting] - [sequence] - [b | _ | <del> </del> | |-------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------| | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | | 59 F- I | Weighing mode | <ul><li>1: Constomer programmed control</li><li>2: Sequential weighing</li></ul> | 1 to 2 | 2 | | 59 F- 3 | Loss-in weight | <ul><li>0: Normal batch weighing</li><li>1: Loss-in weight</li><li>2: External exchange</li></ul> | 0 to 2 | 0 | | 59 F- 4 | Setpoint comparison | Comparison with internal count Comparison with display count | 1 to 2 | 1 | | 59 F- S | Comparison | <ul><li>0: Always output</li><li>1: Stable condition</li><li>2: At batch finish</li></ul> | 0 to 2 | 2 | | 59 F- 7 | Output of zero band | 0: Gross <= Zero band<br>1: Gross <= Zero band | 1 to 2 | 1 | | 59 F- 8 | Recipe mode | <ul><li>0: Not used recipe sequence</li><li>1: Semi-automatic mode</li><li>2: Automatic mode</li></ul> | 0 to 2 | 0 | | 59 F- 9 | Material code, free fall value | <ul> <li>The selection to store free fall value on the automatic free fall compensation or realtime free fall compensation.</li> <li>0: No change Even if automatic free fall compensation is used, parameter of the free fall stored in the material code is not changed. </li> <li>1: Change free fall value The result is memorized to the parameter of the free fall in the material code. </li> </ul> | 0 to 1 | 0 | Category address: [Function] - [Function setting] - [Sequence] - [Control] | categor, aus | icss. [Fulletion] [ | i unction setting [sequence] [e | Ontrol | | |-------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------| | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | | 59 F-11 | Batch start settings | Select a action at starting the weighing sequence. Bit 1: When loading it above zero band, start the sequence. Bit 2: Not used Bit 3: Automatic tare at the starting sequence 0: No (Not worked) 1: Yes (work) | 000 to<br>111 | 000 | | 59 F-12 | Nozzle control | Bit 1: Use nozzle control. "Nozzle down" operation signal is output at starting the sequence. Bit 2: Nozzle contact stop sequence Use start delay timer to prevent weighing error at touching to hopper. Bit 3: "Nozzle up" after compensate. 0: No (Not used) 1: Yes (Use) | 000 to<br>111 | 000 | | 59 F-13 | Eval conditions | After dribble flow, select the stablility condition of comparison. Refer to Eval. delay timer [59F-37]. 0: Timer is up Compare when time is up. 1: Stable and timer is up Compare when weighing is stable and the time is up. 2: Stable or timer is up Compare when weighing is stable or the time is up. | 0 to 2 | 1 | Page 114 AD-4402 Category address: [Function] - [Function setting] - [Sequence] - [Control] | Category add | ress: [Function] – [i | Function setting] – [Sequence] – [C | <u>ontrolj</u> | , | |--------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------| | Category | | | Range | | | address | Name | Descriptions | and | Default | | symbol | | ' | choices | | | 59 F-14 | Batch finish actions | Select a action at batch finish. Bit 1: Auto-start mixing | 00<br>to<br>11 | 00 | | | | 1: Yes (Use) Select a action at discharge finish. | | | | 59 F-15 | Discharge finish actions | Bit 1: Auto-clear tare (Tare clear automatically) Bit 2: Start mixing (Mixture start automatically) | 00<br>to<br>11 | 00 | | | | 0: No (Not used)<br>1: Yes (Use) | | | | | | Selection of rezeroing it at recipe start. | | | | 59 F-16 | Recipe start actions | 0: No (Not used) 1: Yes (Use) | 0 to 1 | 1 | | 59 F-17 | Recipe finish actions | Select a action at recipe finish. Bit 1: Auto-clear tare | 000<br>to<br>111 | 000 | | 59 F-18 | Maximum number of compensation | Set the number of compensation flow. When 0 is set, there is not flow. | 0 to<br>255 | 0 | | 59 F-19 | Comparison flow Eval | Set the condition with compensation close timer and stability. 0: Timer is up Comparison when compensation close timer is up. 1: Stable and timer is up. Comparison after stable mark and compensation close timer is up. 2: Stable or timer is up. Comparison after stable mark or compensation close timer is up. | 0 to 2 | 0 | | 59 F-20 | Free fall compensation | O: No (Not used) 1: Average of last four times free fall. 2: Real time free fall compensation | 0 to 2 | 0 | | Category address symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------| | 59 F-21 | Batch finish output off | O: Off at next start (Turning off until next start) 1: Off at over or unstable. (Turning off when "out of range" or "unstable condition") 2: Off at zero band. (Turning off at zero band) | 0 to 2 | 0 | Category address: [Function] - [Function setting] - [Sequence] - [Timer] | | less. [i direction] = [ | i unction setting] = [sequence] = [T | iiiici j | | |-------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------| | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | | 59 F-31 | Batch monitoring timer | Set the upper limit of the time of sequence. If the sequence is not finnished, sequence error SQ = ERR4 is displayed. If 0 is set, the timer does not work. | 0 to<br>65535 <b>s</b> | 0 <b>s</b> | | 59 F-32 | Batch start delay timer | Set the delay time between start operation and the flow start | 0.0 to<br>65535 <b>s</b> | 0.0 <b>s</b> | | 59 F-33 | Full flow comparison interrupt timer | The timer to prevent weighing error due to vibration of open/close operation. While the timer is not up, the | 0.0 to<br>25.5 <b>s</b> | 0.0 <b>s</b> | | 59 F-34 | Medium flow comparison interrupt timer | comparison does not work. | 0.0 to<br>25.5 <b>s</b> | 0.0 <b>s</b> | | 59 F-35 | Dribble flow comparison interrupt timer | | 0.0 to<br>25.5 <b>s</b> | 0.0 <b>s</b> | | 59 F-36 | Drible flow auto-<br>Free Fall override<br>time | Set the time until the dribble flow is can stant. Use to prevent compensation error of automatic free fall compensation or real time free fall compensation. | 0.0 to<br>25.5 <b>s</b> | 3.0 <b>s</b> | | 59 F-37 | Eval delay timer | Set the time between closing dribble flow and comparing the result. Refer to Eval conditions [59 F-13] | 0.1to<br>25.5 <b>s</b> | 0.1 <b>s</b> | | 59 F-38 | Discharge start delay timer | Set the time between operating discharge start and openning the discahrge gate | 0.0 to<br>25.5 <b>s</b> | 0.0 <b>s</b> | | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------| | 59 F-39 | Discharge<br>monitoring timer | Set the time limit to discarge it When time is up and weighing value is not zero band, sequence error SQ.ERRS is displayed. If 0 is set, the timer does not work. | 0 to<br>65535 <b>s</b> | 0 <b>s</b> | | 59 F-40 | Discharge gate close delay timer | Set the wating time from reacheing to zero band to closing discharge gate for gross. | 0.1 to<br>25.5 <b>s</b> | 0.1 <b>s</b> | | 59 F-43 | Batch finish output on | Set the active (ON) time of batch finish signal. If 0 is set, output is kept until next sequence. | 0.00 to<br>2.55 <b>s</b> | 0.00 <b>s</b> | | 59 F-44 | Discharge finish output on | Set the time to keep the ON for discharge signal. | 0.00 to<br>2.55 <b>s</b> | 0.00 <b>s</b> | | 59 F-45 | Recipe finish output on | Set the time to keep the ON for recipe finish signal. | 0.00 to<br>2.55 <b>s</b> | 0.00 <b>s</b> | | 59 F-46 | Mixing finish output on | Set the time to keep the ON for mixture finish signal. | 0.00 to<br>2.55 <b>s</b> | 0.00 <b>s</b> | | 59 F-47 | Mixing time output on | Set the time to keep the ON for mixture time signal. | 0 to<br>255 <b>s</b> | 0 <b>s</b> | | 59 F-48 | Averaging Eval time | Set the time to average the result. This time controls precision of the result. Refer to Eval delay timer [59 F-37] and Eval conditions [59 F-13]. | 00.0 to<br>2.55 <b>s</b> | 0.00 <b>s</b> | s : secondd: digit Category address: [Function] - [Function setting] - [Sequence] - [Setpoint] | Calegory aud | ress. [Function] - [r | -unction setting] – [sequence] – [se | ιροπι | | |-------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------| | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | | 59 F-51 | Code recall method | Key operation (including serial interface, field bus) Parallel interface (Digital switch) External switch | 1 to 3 | 1 | | 59 F-53 | Hide elements of material code | Select the parameter to hide of material code. Bit 1: Free fall Bit 2: Preliminary Bit 3: Optional preliminary Bit 4: Over Bit 5: Under Bit 6: Zero band Bit 7: Full filling Bit 8: Tare Bit 9: Compensation flow open timer Bit 10: Compensation flow close timer Bit 11: AFFC range Bit 12: Dribble supply at entrance Bit 13: Medium supply at entrance 0: Show 1: Hide | 0000000<br>000000<br>to<br>1111111<br>111111 | 00000<br>00000<br>000 | | 59 F-55 | Add Final value and zero band | 0: No (Not added)<br>1: Yes (Add) | 0 to 1 | 1 | | 59 F-56 | Add Final value and Full value | 0: No (Not added)<br>1: Yes (Add) | 0 to 1 | 1 | Category address: [Function] - [Function setting] - [Sequence] - [Total] | Category aud | acegory address. [i direction] - [i direction setting] - [sequence] - [rotal] | | | | | | | |-------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|--|--|--| | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | | | | | 59 F-61 | Automaic material code total | Not totaled automatically Auto-total OK results To total OK result automatically Auto-total all results To total all result automatically | 0 to 2 | 0 | | | | | 59 F-62 | Automaic recipe code total | 0: No (Not totaled) 1: Yes (Total the result) | 0 to 1 | 0 | | | | Page 118 AD-4402 Category address: [Function] - [Function setting] - [Sequence] - [Safety] | Category add | ress: [Function] – [ | Function setting] – [Sequence] – [S | afetyj | | | | | | |--------------|-----------------------|--------------------------------------------------------------|-------------|---------|--|--|--|--| | Category | | | Range | | | | | | | address | Name | Descriptions | and | Default | | | | | | symbol | | • | choices | | | | | | | | | The maximum eight inputs for safty check are assigned to the | | | | | | | | | | I/O or OP-05. If an input be inactive, the s | sequence is | stopped | | | | | | | | and displays sequence error. Refet to 7.5 | • | | | | | | | | | and Alarm. These safety checks can u | | • | | | | | | | | sequence. | | | | | | | | | | ooquonico. | | | | | | | | | | Bits map | | | | | | | | | | Bit 1: Safety input 1 | | | | | | | | 59 F-71 t | to 59 F-75 | Bit 2: Safety input 2 | | | | | | | | | | Bit 3: Safety input 3 | | | | | | | | | | Bit 4: Safety input 4 | | | | | | | | | | Bit 5: Safety input 5 | | | | | | | | | | Bit 6: Safety input 6 | <b>,</b> 1 | | | | | | | | | Bit 7: Safety input 7 | | | | | | | | | | Bit 8: Safety input 8 | | | | | | | | | | | | | | | | | | | | 0: No (Not used) | | | | | | | | | <del>,</del> | 1: Yes (Use) | | | | | | | | | Batching safety | If the assigned input is inactive during | | | | | | | | 59 F-71 | | the weighing sequence, it occurs an | | | | | | | | | check | sequence error. | | | | | | | | | Discharge sefet: | If the assigned input is inactive during | | | | | | | | 59 F-72 | Discharge safety | the discharge sequence, it occurs an | | | | | | | | | check | sequence error. | 0000000 | | | | | | | | Desire | If the assigned input is inactive during | 0 | 00000 | | | | | | 59 F-73 | Recipe safety | the recipe sequence, it occurs an | to | 00000 | | | | | | | check | sequence error. | 1111111 | 000 | | | | | | | | If the assigned input is inactive during | 1 | | | | | | | 59 F-74 | Mixing safety check | the mixture sequence, it occurs an | | | | | | | | | winding ballety brich | sequence error. | | | | | | | | | | If the assigned input is inactive during | | | | | | | | 59 F-75 | General safety | the all sequence, it occurs an sequence | | | | | | | | L | check | error. | | | | | | | | | l . | 1 0 | 1 | | | | | | ## Category address: [Function] - [Function setting] - [Control I/O Function] - [Input] The list to assign the function for the input terminal of the I/O | 1 Z<br>2 Z<br>3 T<br>4 T<br>5 B | Function description No function Zero Zero clear Tare Tare clear Satch start | Edge Edge Edge | No.<br>26<br>27<br>28 | Function description Clear totals of active recipe code Clear totals of all recipe code | Read<br>Edge | |-----------------------------------------|----------------------------------------------------------------------------------|----------------|-----------------------|-----------------------------------------------------------------------------------------|--------------| | 1 Z<br>2 Z<br>3 T<br>4 T<br>5 B | Zero<br>Zero clear<br>Tare<br>Tare clear<br>Batch start | Edge<br>Edge | 27 | code | | | 2 Z<br>3 T<br>4 T<br>5 B | Zero clear<br>Tare<br>Tare clear<br>Batch start | Edge<br>Edge | | | | | 2 Z<br>3 T<br>4 T<br>5 B | Zero clear<br>Tare<br>Tare clear<br>Batch start | Edge<br>Edge | | Clear totals of all recipe code | | | 3 T<br>4 T<br>5 B | are<br>are clear<br>Batch start | Edge | 28 | Ontate also also beautiful | Edge | | 4 T<br>5 B | are clear<br>Batch start | | | Safety check input 1 | Level | | 5 B | Batch start | | 29 | Safety check input 2 | Level | | h + + + + + + + + + + + + + + + + + + + | | Edge | 30 | Safety check input 3 | Level | | 6 R | | Edge | 31 | Safety check input 4 | Level | | | Recipe start | Edge | 32 | Safety check input 5 | Level | | 7 D | Discharge start | Edge | 33 | Safety check input 6 | Level | | 8 M | /lixtire start | Edge | 34 | Safety check input 7 | Level | | E | external switch control | Level | 35 | Safety check input 8 | Level | | 9 0 | : Normal bach | | | | | | 1 | : Loss-in weight | | | | | | 10 M | lanual free fall compensation | Edge | 36 | Foced batch finish | Edge | | 11 A | Accumulation command | Edge | 37 | Foced recipe finish | Edge | | 12 C | Cancel the last result | Edge | 38 | Foced discharge finish | Edge | | 13 E | mergency stop | Level | 39 | Manual full flow | Level | | 14 N | Material / Recipe code, | Level | 40 | Manual medium flow | Level | | ו ויי | Material / Recipe code,<br>BCD 2 | Level | 41 | Mnaual dribble flow | Level | | 1 10 1 | Material / Recipe code,<br>BCD 4 | Level | 42 | Manual discharge | Level | | 1 / 1 | Material / Recipe code,<br>BCD 8 | Level | 43 | Manual mixture | Level | | 1 1X 1 | Material / Recipe code,<br>BCD 10 | Level | 44 | Error reset | Edge | | 1 19 1 | Material / Recipe code,<br>BCD 20 | Level | 45 | Hold | Level | | 70 | Material / Recipe code,<br>BCD 40 | Level | 46 | Key unlock | Level | | 71 | Material / Recipe code,<br>BCD 80 | Level | 47 | Manual print command | Edge | | 22 P | Pause | Edge | 48 | Code recall external switch control OFF: key, ON: digital switch | Level | | 23 R | Restart | Edge | 49 | Recipe interrupt | Level | | 24 C | Clear totals of active material code | Edge | 50 | Net / gross | Edge | | 25 C | Clear totals of all material code | Edge | | | | Page 120 AD-4402 Input terminals of the I/O and default functions | | 111111111111111111111111111111111111111 | arra acra | | | |-------------------------|-----------------------------------------|-----------|----------------------------------|-----------------| | Category address symbol | Terminal na | ıme | Default choices | Defau<br>It No. | | In F- I | Input terminal | A1 | Zero | 1 | | In F- 2 | Input terminal | A2 | Tare | 3 | | In F- 3 | Input terminal | A3 | Tare clear | 4 | | In F- Y | Input terminal | A4 | Batch start | 5 | | In F- 5 | Input terminal | A5 | Emergency stop | 13 | | In F- 6 | Input terminal | A6 | Material / Recipe code,<br>BCD 1 | 14 | | In F- 7 | Input terminal | A7 | Material / Recipe code,<br>BCD 2 | 15 | | In F- 8 | Input terminal | A8 | Material / Recipe code,<br>BCD 4 | 16 | | In F- 9 | Input terminal | A9 | Pause | 22 | | In F-10 | Input terminal A | \10 | Restart | 23 | | In F-11 | Input terminal A | \11 | Error reset | 44 | ## Category address: [Function] - [Function setting] - [Control I/O Function] - [Output] The list to assign the function for the output terminal of the I/O | | he list to assign the function f | 1 | • | | T | |-----|------------------------------------|-----|-----------------------------|-----|-----------------------------| | No. | Function description | No. | Function description | No. | Function description | | 0 | No function | 30 | Gross display | 60 | Material hopper 2 <b>DF</b> | | 1 | Stable | 31 | Net display | 61 | Material hopper 3 FF | | 2 | Zero band | 32 | During hold | 62 | Material hopper 3 MF | | 3 | FUII (Full filling) | 33 | Internal reservation | 63 | Material hopper 3 <b>DF</b> | | 4 | Full flow | 34 | Internal reservation | 64 | Material hopper 4 FF | | 5 | Medium flow | 35 | Material hopper 1 | 65 | Material hopper 4 MF | | 6 | Dribble flow | 36 | Material hopper 2 | 66 | Material hopper 4 <b>DF</b> | | 7 | Over | 37 | Material hopper 3 | 67 | Material hopper 5 FF | | 8 | OK | 38 | Material hopper 4 | 68 | Material hopper 5 MF | | 9 | Under | 39 | Material hopper 5 | 69 | Material hopper 5 <b>DF</b> | | 10 | Internal reservation | 40 | Material hopper 6 | 70 | Material hopper 6 <b>FF</b> | | 11 | Internal reservation | 41 | Material hopper 7 | 71 | Material hopper 6 MF | | 12 | Mixture | 42 | Material hopper 8 | 72 | Material hopper 6 <b>DF</b> | | 13 | Discharge (Open the dscharge gate) | 43 | Material hopper 9 | 73 | Material hopper 7 FF | | 14 | Batch finish | 44 | Material hopper 10 | 74 | Material hopper 7 MF | | 15 | Recipe finish | 45 | Material hopper 11 | 75 | Material hopper 7 <b>DF</b> | | 16 | Discharge finish | 46 | Material hopper 12 | 76 | Material hopper 8 FF | | 17 | Mixture finish | 47 | Material hopper 13 | 77 | Material hopper 8 MF | | 18 | Nozzle down | 48 | Material hopper 14 | 78 | Material hopper 8 <b>DF</b> | | | Online. If sequence is | 49 | Material hopper 15 | 79 | Material hopper 9 FF | | 19 | enable, 0.5 sec. pulse is | | | | | | | output. | | | | | | 20 | Weighing sequence in | 50 | Material hopper 16 | 80 | Material hopper 9 MF | | 20 | process | | | | | | | Input acknowledge. | 51 | Material hopper 17 | 81 | Material hopper 9 <b>DF</b> | | 21 | If there is a input signal, 0.5 | | | | | | | sec. pulse is output. | | | | | | 22 | Weighing sequence error | 52 | Material hopper 18 | 82 | Material hopper10 FF | | 23 | Alram 1 | 53 | Material hopper 19 | 83 | Material hopper10 MF | | 24 | Alram 2 | 54 | Material hopper 20 | 84 | Material hopper10 <b>DF</b> | | 25 | Zero error | 55 | Material hopper 1 FF | | | | 26 | Capacity exceeded | 56 | Material hopper 1 MF | | | | 20 | (Out of range) | | | | | | 27 | Buzzer | 57 | Material hopper 1 <b>DF</b> | | | | 28 | During tare | 58 | Material hopper 2 FF | | | | 29 | Center of zero | 59 | Material hopper 2 MF | | | Full flow: FF Medium flow: MF Drrible flow: DF Page 122 AD-4402 Output terminals of the I/O and default functions | Category<br>address<br>symbol | Terminal name | Default choices | Defau<br>It No. | |-------------------------------|---------------------|-------------------------|-----------------| | Outf- I | Output terminal B1 | Zero band | 2 | | Outf- 2 | Output terminal B2 | Full flow | 4 | | Outr- 3 | Output terminal B3 | Medium flow | 5 | | Outf- 4 | Output terminal B4 | Dribble flow | 6 | | OutF- 5 | Output terminal B5 | Over | 7 | | Outf-6 | Output terminal B6 | OK | 8 | | OutF- 7 | Output terminal B7 | Under | 9 | | Outf-8 | Output terminal B8 | Batch finish | 14 | | OutF- 9 | Output terminal B9 | Weighing sequence error | 22 | | Out F - 10 | Output terminal B10 | Alarm 1 | 23 | | Out F - 11 | Output terminal B11 | Alarm 2 | 24 | Category address: [Function] - [Function setting] - [Serial] - [RS-485] | | less. [i unction] – [ | runction settingj – [Serial] – [KS-48 | | | |----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------| | Category | | | Range | | | address | Name | Descriptions | and | Default | | symbol | | · | choices | | | r5 F- 1 | Output data | When jet stream mode of Comunication mode [r 5 | 1 to 10 | 1 | | r5 F- 2 | Comunication mode | 1: Stream mode 2: Auto print mode 3: Manual print mode 4: Print at total 5: Jet stream mode 6: Command mode | 1 to 6 | 6 | | r5 F- 3 | Baud rate | 1: 600 bps<br>2: 12000 bps<br>3: 2400 bps<br>4: 4800 bps<br>5: 9600 bps<br>6: 19200 bps<br>7: 38400 bps (Common mode can not select) | 1 to 7 | 5 | | r5 F- 4 | Parity check | 0: Not used 1: Odd 2: Even | 0 to 2 | 0 | | r5 F- 5 | Character length | 7: 7 bits<br>8: 8 bits | 7, 8 | 8 | | r5 F- 6 | Stop bits | 1: 1 bit<br>2: 2:bits | 1 to 2 | 1 | | r5 F- 7 | Terminator | 1: CR | 1 to 2 | 2 | | r5 F- 8 | Address | 0: Address not used<br>1 to 99: Address used | 0 to 99 | 0 | | r5 F- 9 | Response timer | Set the waiting timer from receiving command to transmitting a response. | 0.0 to<br>25.5 <b>s</b> | 0.0 <b>s</b> | | e: Soco | | | | | s: Second Category address: [Function] - [Function setting] - [Serial] - [Current loop] | category and | ress. [r arrection] [ | anetion settings [serials [earre | inc loop] | | |--------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------| | Category | | | Range | | | address | Name | Descriptions | and | Default | | symbol | | | choices | | | EL F- I | Output data | <ol> <li>Weighing value</li> <li>Gross value</li> <li>Net value</li> <li>Tare value</li> <li>Gross value/ Net value/ Tare value</li> <li>Weighing value with material code</li> <li>Gross value with material code</li> <li>Net value with material code</li> <li>Tare value with material code</li> <li>Gross value/ Net value/ Tare value with material code</li> </ol> | 1 to 10 | 1 | | [L F- 2 | Comunication mode | <ol> <li>Stream mode</li> <li>Auto print mode</li> <li>Manual print mode</li> <li>Print at accumulation</li> <li>Jet Stream mode</li> </ol> | 1 to 4 | 1 | | [L F- 3 | Baud rate | 1: 600 bps<br>2: 12000 bps<br>3: 2400 bps | 1 to 3 | 3 | | [L F- 4 | Burst rate of continuous output | Set the burst time when gross, net or tare is output continuously. Stream mode uses 0.0 <b>s</b> . | 0.00 to<br>2.55 <b>s</b> | 0.00 <b>s</b> | s: Second Category address: [Function] - [Function setting] - [Option] - [slotn] - [OP-01] OP-01: Option BCD Output slot n : slot number | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------| | 01 F- 1 | Out put data | <ol> <li>Weighing value</li> <li>Gross value</li> <li>Net value</li> <li>Tare value</li> <li>Current material code total</li> <li>Current recipe code total</li> <li>Current recipe code total</li> <li>Current recipe code total #</li> <li>Current material code and recipe code</li> <li>Error alarm No.</li> </ol> | 1 to 10 | 1 | | 0 F- 3 | Communication mode | <ol> <li>Stream mode</li> <li>Auto print mode</li> <li>Manual print mode</li> <li>Print at total</li> <li>Jet stream mode (each sampling)</li> </ol> | 1 to 5 | 1 | | 01F-4 | Output logic | Positive logic Negative logic | 1 to 2 | 2 | Page 126 AD-4402 Category address: [Function] - [Function setting] - [Option] - [slotn] - [OP-02] OP-02: Option Output Relay Output slot n : slot number | Category | | | | | Range | | |----------|-----------------|----|-------------------|--------------|---------|----| | address | Name | | Desc | Descriptions | | | | symbol | | | | | choices | | | 02 F- I | Output terminal | 1 | Material hopper 1 | Medium flow | 0 to 84 | 56 | | 02 F- 2 | Output terminal | 2 | Material hopper1 | Drrible flow | 0 to 84 | 57 | | 02 F- 3 | Output terminal | 3 | Material hopper 2 | Medium flow | 0 to 84 | 59 | | 02 F- 4 | Output terminal | 4 | Material hopper 2 | Drrible flow | 0 to 84 | 60 | | 02 F- 5 | Output terminal | 5 | Material hopper 3 | Medium flow | 0 to 84 | 62 | | 02 F- 7 | Output terminal | 7 | Material hopper 3 | Drrible flow | 0 to 84 | 63 | | 02 F- 8 | Output terminal | 8 | Material hopper 4 | Medium flow | 0 to 84 | 65 | | 02 F- 9 | Output terminal | 9 | Material hopper 4 | Drrible flow | 0 to 84 | 66 | | 02 F-10 | Output terminal | 10 | Material hopper 5 | Medium flow | 0 to 84 | 69 | Default parameters are set to double gates hopper Category address: [Function] – [Function setting] – [Option] – [slotn] – [OP–03] or [Function] - [Function setting] - [Option] - [slotn] - [OP-04] OP-03: Option RS-422 / 485 Serial Interface OP-04: Option RS-232C Serial Interface slot n : slot number | 0.1 | | | 510111.5101 | 1.0.1 | |--------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------| | Category | | 5 | Range | 5 | | address | Name | Descriptions | and | Default | | symbol | | | choices | | | 03 F- I<br>04 F- I | Output data | When jet stream mode of Coumnication mode [r 5 F - 2] is used, the 1, 2, 3 can select. And if freeze mode is used in jet stream mode, output is stoped. 1: Weighing value 2: Gross value 2: Net value 4: Tare value 5: Gross value/ Net value/ Tare value 6: Weighing value with material code 7: Gross value with material code 8: Net value with material code 9: Tare value with material code 10: Gross value/ Net value/ Tare value with material code | 1 to 10 | 1 | | 03 F- 2<br>04 F- 2 | Comunication mode | <ol> <li>Stream mode</li> <li>Auto print mode</li> <li>Manual print mode</li> <li>Print at total</li> <li>Jet stream mode</li> <li>Command mode</li> </ol> | 1 to 6 | 6 | | 03 F- 3<br>04 F- 3 | Baud rate | 1: 600 bps<br>2: 12000 bps<br>3: 2400 bps<br>4: 4800 bps<br>5: 9600 bps<br>6: 19200 bps<br>7: 38400 bps (Command mode can not select) | 1 to 7 | 5 | | 03 F- Y<br>04 F- Y | Parity check | 0: Not used<br>1: Odd<br>2: Even | 0 to 2 | 0 | | 03 F- 5<br>04 F- 5 | Charactor length | 7: 7 bits<br>8: 8 bits | 7, 8 | 8 | | 03 F- 6<br>04 F- 6 | Stop bits | 1: 1 bit<br>2: 2:bits | 1 to 2 | 1 | | 03 F- 7<br>04 F- 7 | Terminator | 1: CR | 1 to 2 | 2 | | Category | | | Range | | |----------|----------------|--------------------------------------|---------------|---------------| | address | Name | Descriptions | and | Default | | symbol | | | choices | | | 03 F- 8 | Address | 0: Address is not used | 0 to 99 | 0 | | 04 F- 8 | Addiess | 1 to 99: Address is used | 0 10 99 | U | | 03 F- 9 | Posponso timor | Set the waiting timer from receiving | 0.00 to | 0.00 <b>s</b> | | u | Response timer | command to transmitting a response. | 2.55 <b>s</b> | 0.00 \$ | | 03 F-11 | RS-422 / 485 | 1: RS-422 | 1 to 2 | 1 | | 11 - 1 | switch | 2: RS-485 | 1 10 2 | ' | Category address: [Function] - [Function setting] - [Option] - [slotn] - [OP-05] OP-05: Option Parallel input / output slot n : slot number | Category | | | | Range | | |----------|----------------|-----|--------------------------------------|---------|---------| | address | Name | | Descriptions | and | Default | | symbol | | | | choices | | | 05 F- I | Input terminal | A1 | | 0 to 50 | 0 | | 05 F- 2 | Input terminal | A2 | Set the number of the function. | 0 to 50 | 0 | | 05 F- 3 | Input terminal | A3 | | 0 to 50 | 0 | | 05 F- 4 | Input terminal | A4 | Caution | 0 to 50 | 0 | | 05 F- 5 | Input terminal | A5 | Avoid to select the same function to | 0 to 50 | 0 | | 05 F- 6 | Input terminal | A6 | plural terminals and keys. | 0 to 50 | 0 | | 05 F- 7 | Input terminal | A7 | | 0 to 50 | 0 | | 05 F- 8 | Input terminal | A8 | | 0 to 50 | 0 | | 05 F- 9 | Input terminal | A9 | | 0 to 50 | 0 | | 05 F-10 | Input terminal | A10 | | 0 to 50 | 0 | | 05 F-II | Input terminal | A11 | | 0 to 50 | 0 | | 05 F-12 | Input terminal | A12 | | 0 to 50 | 0 | | OS F-13 | Input terminal | A13 | | 0 to 50 | 0 | | 05 F-14 | Input terminal | A14 | | 0 to 50 | 0 | | 05 F-15 | Input terminal | A15 | | 0 to 50 | 0 | | 05 F-16 | Input terminal | A16 | | 0 to 50 | 0 | | Category | | | | | Range | | |----------|----------------|-----|-------------------|--------------|---------|----| | address | Name | | Desci | and | Default | | | symbol | | | | | choices | | | 05 F-17 | Input terminal | B1 | Material hopper 1 | Medium flow | 0 to 84 | 56 | | OS F-18 | Input terminal | B2 | Material hopper 1 | Drrible flow | 0 to 84 | 57 | | OS F-19 | Input terminal | В3 | Material hopper 2 | Medium flow | 0 to 84 | 59 | | OS F-20 | Input terminal | B4 | Material hopper 2 | Drrible flow | 0 to 84 | 60 | | 05 F-21 | Input terminal | B5 | Material hopper 3 | Medium flow | 0 to 84 | 62 | | OS F-22 | Input terminal | B6 | Material hopper 3 | Drrible flow | 0 to 84 | 63 | | OS F-23 | Input terminal | B7 | Material hopper 4 | Medium flow | 0 to 84 | 65 | | OS F-24 | Input terminal | B8 | Material hopper 4 | Drrible flow | 0 to 84 | 66 | | OS F-25 | Input terminal | B9 | Material hopper 5 | Medium flow | 0 to 84 | 68 | | OS F-26 | Input terminal | B10 | Material hopper 5 | Drrible flow | 0 to 50 | 69 | | 05 F-27 | Input terminal | B11 | Material hopper 6 | Medium flow | 0 to 50 | 71 | | OS F-28 | Input terminal | B12 | Material hopper 6 | Drrible flow | 0 to 50 | 72 | | OS F-29 | Input terminal | B13 | Material hopper 7 | Medium flow | 0 to 50 | 74 | | 05 F-30 | Input terminal | B14 | Material hopper 7 | Drrible flow | 0 to 50 | 75 | | 05 F-31 | Input terminal | B15 | Material hopper 8 | Medium flow | 0 to 50 | 77 | | OS F-32 | Input terminal | B16 | Material hopper 8 | Drrible flow | 0 to 50 | 78 | Page 130 AD-4402 Category address: [Function] - [Function setting] - [Option] - [slotn] - [OP-07] OP-07: Option Analog Output slot n : slot number | Category<br>address<br>symbol | Name | Descriptions | Range<br>and<br>choices | Default | |-------------------------------|-----------------|-----------------------------------------------------------------------------|--------------------------|---------| | 07 F- I | Out put data | <ol> <li>Displayed value</li> <li>Gross value</li> <li>Net value</li> </ol> | 1 to 3 | 1 | | 07 F- 2 | Weight at 4 mA | Set the weighit value when 4 mA is output. | -999999<br>to<br>9999999 | 0 | | 07 F- 3 | Weight at 20 mA | Set the weighit value when 20 mA is output. | -999999<br>to<br>9999999 | 16000 | # 11. Specifications #### General Power supply 85 to 250 VAC, 50 or 60Hz, (Stable power source) Power consumption Approximately 30 VA Pysical dimensions 192 (W) x 96 (H) x 135 (D) mm Weight Approximately 1.8 kg Panel cutout size 186 x 92 mm Operation temperature $-5 \degree \text{ to } 40 \degree \text{ c}$ Battery life of backup RAM typ. 10 years at 25 °C. 5 years at 40 °C. Analog to Digital Unit Input sensitivity Up to 0.3 $\mu V$ / digit Zero adjustment range 0 to 2 mV /V (0 to 20 mV) Measuerment range 0 to 3.2 mV /V (0 to 32 mV) Input impedance $10 \text{ M}\Omega$ Loadcell excitation voltage 10 V DC ±5% Maximum loadcells 8 pieces in pallel with $350\Omega$ loadcell Span temperature coefficient 8 ppm/ ℃ Zero temperature coefficient $0.2 \,\mu\text{V} + 8 \,\text{ppm}/\,^{\circ}\text{C}$ of dead load typ. Non-linearity 0.01 % of F. S. Input noise Below $\pm 0.3~\mu Vp$ -p A/D conversion $\Delta$ - $\Sigma$ conversion A/D resolution Approximately 1/1,000,000 Maximum display 16000 (to be able cancel limitation) Sampling rate 100 times per second Digital span function loLoadcell offset, calibration using key operation to enter the sensitivity, resolution 1/1000 Re-calibration at A/D board repacement Omissible (resolution 1/500) Backup method A/D data: EEPROM Calibration: Flash memory Function: Flash memory Material code data: Backup RAM or flash memory Recipe code data: Backup RAM or flash memory Display Main display Fluorescent display, cobalt blue, height: 18mm, 7seg., 7 figures Sub-display Fluorescent display, cobalt blue, height: 5mm, 7seg., 54 figures and 5x7 dots, 54 figures State indicator Unit indicator Unit indicator Symbols Fluorescent display, cobalt blue, 8△ pieces, 10 symbols, 5x7 dots Fluorescent display, cobalt blue, height: 11mm, 5x7 dots, 2 figures Fluorescent display, cobalt blue, height: 11mm, 5x7 dots, 2 figures Page 132 AD-4402 Weighing Weighing mode Batch Weighing Mode: Normal batch weighing, loss-in weight Sequential Weighing Mode: Normal batch weighing, loss-in weight Element of sequential weighing mode Compensation Sequence Approach Sequence Discharge Sequence Plain Recipe Sequence Automatic Selection of Supplying Mat Nozzle Control Sequence (vacuum cleaner) Mixture Sequence Safety Check Function Pause and Emergency Stop Restart Sequence Automatic Free Fall Compensation Real Time Free Fall Compensation Code data Max. number of material code 100 codes Element of material code Name, hopper No., Target value, free fall, preliminary, > optional preliminary, over, under, accumulation count, accumulation weight, tare value, compensation open timer, compensation close timer Max. number of recipe code Element of recipe code Name, material codes (max. 10, in mixture order), 100 codes accumulation count, accumulation weight ## Connectors and interfaces Power supply terminal, Loadcell terminal, Standard I/O terminal, Standard RS-485 interface, Current loop, keys and display ## Standard I/O terminal Refer to "8.1. Control I/O Function". ## Standard RS-485 interface Refer to "8.2. Built-in RS-485 Interface". ## Current loop Refer to "8.3. Built-in Current Loop Output". ## BCD Output of Option, OP-01 Refer to "8.4. BCD Output of Option, OP-01". ## Relay Output of Option, OP-02 Refer to "8.5. Relay Output of Option, OP-02". ## RS-422/485 Interface of Option, OP-03 Refer to "8.6. RS-422/485 Interface of Option, OP-03". ## RS-232C Interface of Option, OP-04 Refer to "8.7. RS-232C Interface of Option, OP-04". #### Parallel I/O of Option. OP-05 Refer to "8.8. Parallel I/O of Option, OP-05". #### Analog Output of Option. OP-07 Refer to "8.9. Analog Output of Option, OP-07". ## CC Link interface of Option, OP-20 Refer to OP-20 instruction manual regarding the details. ## DeviceNet interface of Option, OP-21 Refer to OP-21 instruction manual regarding the details. ## PROFIBUS interface of Option, OP-22 Refer to OP-22 instruction manual regarding the details. Page 134 AD-4402 ## 11.1. Dimensions ## X ## 11.2. Accessories | Capacity label | 1 | |------------------------------------------|---| | I/O connector | 1 | | I/O connector cover | 1 | | RS-485, terminator resister 100 $\Omega$ | 1 | | Cover of power supply terminal | 1 | | Cover of RS-485 and current loop | 1 | | Cover of loadcell teminal | 1 | | Rubber packing for mounting to panel | 1 | # 12. References tare ## **12.1.** Abbreviation | # | counts | TC | Tare clear | |---------------|---------------------------------------|--------|--------------------------------| | #Tot | total count | RTot | recipe total | | 0Band | zero band | RTot# | recipe total count | | era err | tare is not used | SF | supplemental flow | | ØT | tare is not used | | (compensation flow) | | ADC | Analog to digital converter | SFOT | Supplementary Flow | | 1 11 | A trialog to digital converter | | Open Timer | | AFFC | active free fall compensation | SFCT | Supplementary Flow Close Timer | | r"ı | baud rate | | tare | | Brate<br>~7 | center of zero | TC: | Tare clear | | CZ<br>D | division | | Total Weight | | | dribble flow | Tot | Total Counts | | DFlow<br>ci | | Tot# | tare | | Eval<br>ee.11 | evaluation, (criteria) free fall | TR | with | | FFall<br>FF1 | full flow | W/ | with zero | | FFlow | | w/0 | | | FNC | function | WGT | weight | | 68 | gross | WGTTot | weight total | | Hop. | Hopper | ZR | zero | | I/O | input / output | _ | | | IDF | initial dribble flow | _ | | | IFF | initial medium flow | _ | | | <u></u> | loadcell | | | | LC<br> | loadcell | | | | <u>MCode</u> | material code | | | | MFlow<br> | medium flow | | | | Neg<br> | negative | | | | MT | net | | | | NWT | net weight | _ | | | Op. | optional | _ | | | OPP1m | Optional Preliminary | _ | | | P I/O | parallel I/O | | | | Plm | Preliminary | | | | PLC | programmable logic controller unit | | | | PT | preset tare | | | | RTot | recipe total | | | | RTot# | recipe total count | | | | SF | supplemental flow (compensation flow) | | | | SFOT | Supplementary Flow Open Timer | | | | SFCT | Supplementary Flow Close Timer | | | Page 136 AD-4402 ## 12.2. ASCII Code for AD-4402 The characters are special code for the name of material code and recipe code. Therefor, some characters are not the same as U.S. code. | | | Lower bits | | | | | | | | |------------|---|------------|---|-------|----|---|---|-------|---| | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 0 | | | Space | 0 | @ | Р | Space | р | | | 1 | | | ! | 1 | Α | Q | а | q | | | 2 | | | " | 2 | В | R | b | r | | | 3 | | | # | 3 | С | S | С | S | | | 4 | | | \$ | 4 | D | Т | d | t | | | 5 | | | % | 5 | Е | J | е | u | | | 6 | | | & | 6 | F | V | f | V | | Upper bite | 7 | | | 1 | 7 | G | W | g | W | | Upper bits | 8 | | | ( | 8 | Η | X | h | Х | | | 9 | | | ) | 9 | 1 | Υ | i | У | | | Α | LF | | * | : | J | Z | j | Z | | | В | | | + | • | K | [ | k | { | | | С | | | , | < | L | ¥ | I | | | | D | CR | | - | II | М | ] | m | } | | | Е | | | | ^ | N | ٨ | n | • | | | F | | | / | ? | 0 | | 0 | 0 | ## **12.3.** Index | #137 | actual load calibration | | |--------------------------------------------------|-----------------------------|---------| | #Tot137 | ADC | 137 | | [Control I/O] - [Input]121 | AFFC | 137 | | [Control I/O] - [Output]123 | alarm | 70 | | [General] - [Others]111 | analog output | 94. 132 | | [General] - [Sub-display]109 | ASCII code | | | [General] - [Weighing]107 | auto print mode | | | | automatic program mode | | | [OP-01] | | | | [OP-02] | backuped RAM | | | [OP-03] | batch weighing | | | [OP-04] | baud rate | | | [OP-05]131 | BCD output | | | [OP-07]132 | BCD terminals | 85 | | [Sequence] - [Basic]114 | Brate | 137 | | [Sequence] - [Control]115 | buzzer | 112 | | [Sequence] - [Safety]120 | calibration | 20 | | [Sequence] - [Setpoint]119 | capacity | | | [Sequence] - [Timer]117 | category address | | | [Sequence] - [Total]119 | CERRI | | | [Serial] - [Current loop]126 | CERR10 | | | | | | | [Serial] - [RS-485]125 | | | | <del> </del> | <u> CERR2</u> | | | <b>▼</b> key8 | CERR3 | | | CODE RECALL) | CERR4 | 24 | | , CODE RECALL key17 | CERR6 | | | , CODE RECALE Rey | CERR7 | 24 | | ENTER | CERR8 | 24 | | ESC ENTER key | CERR9 | | | (ESC) | CL F | | | OFF, <b>ESC</b> key8, 21, 22 | clear | _ | | | command mode | | | F1 / F3 | communication modes | | | , <b>F1</b> key, <b>F3</b> key7, 112 | | | | F2 / F4 | comparison | | | F2 key, <b>F4</b> key7, 112 | comparison output | | | | compensation | | | SHIFT | compensation sequence | | | Standby indicator | Consumer programmed control | | | Standby indicator9 | current loop | 83 | | <b>→T←</b> | customer programmed control | 35, 60 | | | CZ | 9, 137 | | →0← | D | | | zero key8 | D.FLOW | | | | data length | | | 0 F127 | decimal point | | | 02 F128 | delete | | | 03 F | DF1ow | | | 04 F | | | | 05 F | digital span | | | <u>07</u> F132 | discharge sequence | | | 0Band137 | division | | | ©T137 | earth terminal | | | In F122 | emergency | | | 2 wires75, 89 | emergency stop | | | 4 wires | entrance sequence | 45 | | | error code | | | | error message | | | | error signal | | | accumulation69 | Eval | | | | EXC | | | accumulation print mode77, 83, 87 | EXC+ | | | | L/\(\mathcal{O}\) | | | F.FLOW | 9 | Outf | 124 | |----------------------------------|------------------|--------------------------|---------------------------------------| | FFall | | output terminals | | | FFIow | | P 1/0 | | | FINISH | | Parallel I/O | | | flash memory | | parameters | | | FNC | | parity bit | | | forecast control function | | pause | | | free fall | | plain recipe sequence | | | FULL | , | PLC | | | fuse | | Plm | | | G1 | 23 | power consumption | | | gate control | | power cord | | | ĞEnF | | power source | | | graphic display | | power supply | | | graphic indicator | | preset tare | | | gravity acceleration correction. | | PT | | | gross | | real time free fall com | mpensation.59 | | ŠS | | recipe code | | | Header | 113 | recipe mode | · · · · · · · · · · · · · · · · · · · | | Hide elements | 119 | relay output | | | Hop | | restart | | | hopper scale | | re-zero | | | I/Ò | | r5 F | 125 | | I/O terminals | 93 | RS-232C | 83, 92, 129 | | IDF | | RS-422 | | | IMF | | RS-485 | | | indication items | 67 | RTot | | | input terminals | 73 | RTot# | | | intialization | | safety check | | | IP-65 | 5 | sampling rate | | | jet steam mode | 77, 87 | SEN | | | key design | 66 | SEN+ | 12 | | | 137 | sensitivity | 13, 133 | | | 137 | sequential weighing | 114 | | loadcell | 12, 13 | sequential weighing mode | | | loadcell excitation voltage | 133 | setpoint | 38, 60, 61, 63 | | loss-in weight | .35, 36, 41, 114 | SF | 137 | | M.FLOW | | SFCT | 137 | | manual print mode | 77, 83, 87 | SFOT | 137 | | mass | 20 | span adjustment | 20 | | mat | 36, 51 | 59 F | 114 | | material code | 25, 134 | start bit | 75, 83, 89, 92 | | maximum display | 133 | stop bits | 75, 83, 89, 92 | | MCode | 137 | stream mode | 77, 83, 87 | | measuerment range | 133 | sub-display | 67 | | memory | 72 | 5UbF | | | menu | | summing box | 20 | | MF1ow | 137 | supplying mat | | | mixture sequence | | T | | | mode map | 19 | tare | | | monitor mode | | TC | | | Ne9 | 137 | terminal E | | | net | | terminal parts | | | normal batch | | terminator | | | normal batching | | test mode | | | nozzle | | <u> </u> | | | NT | | <u> Tot#</u> | | | NUT | | TR | | | OFF | | undo | | | ON | | unit | | | <u> </u> | | viscosity | | | OPP1m | | W/: | | | othF | 111 | w/0 | 138 | | | | | | | water-resistant panel | 5 | |-----------------------|-----| | weighing status | 72 | | weight | 20 | | WGŤ | 138 | | WGTTot | 138 | | 7 RAND | 9 | | zero point adjustment | 20 | |-----------------------|-----| | zero range | 133 | | zero tracking | | | ZR | 138 | | 7R FRR | 9 | ## A&D Company, Limited 3-23-14 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013 JAPAN Telephone: [81] (3) 5391-6132 Fax: [81] (3) 5391-6148 #### **A&D ENGINEERING, INC.** 1555, McCandless Drive, Milpitas, CA. 95035 U.S.A. Telephone: [1] (408) 263-5333 Fax: [1] (408)263-0119 #### **A&D INSTRUMENTS LTD.** Unit 24/26 Blacklands Way, Abingdon Business Park, Abingdon, Oxon OX14 1DY United Kingdom Telephone: [44] (1235) 550420 Fax: [44] (1235) 550485 #### <German Scales Office> Berner Straße 64, 60437 Frankfurt/Main 50 GERMANY Telephone: [49] (69) 507-1017 Fax: [49] (69) 507-2054 ### **A&D MERCURY PTY. LTD.** 32 Dew Street, Thebarton, South Australia 5031 AUSTRALIA Telephone: [61] (8) 8352-3033 Fax: [61] (8) 8352-7409 #### **A&D KOREA Limited** 8th Floor, Manhattan Bldg. 36-2 Yoido-dong, Youngdeungpo-ku, Seoul, KOREA Telephone: [82] (2) 780-4101 Fax: [82] (2) 782-4280 # AD-4402 OP-20 ## INSTRUCTION MANUAL ## **CC-Link** Interface WM: PD4000298 This is a hazard alert mark. This mark informs you about the operation of the product. Note This manual is subject to change without notice at any time to improve the product. No part of this manual may be photocopied, reproduced, or translated into another language without the prior written consent of the A&D Company. Product specifications are subject to change without any obligation on the part of the manufacture. Copyright@2001 A&D Company, Limited ## Contents | 1. | Compliance | 2 | |------|-----------------------------------------|----| | | .1. Compliance with FCC rules | | | | .2. Compliance with European Directive | | | | .z. Compilarios with European Birostivo | | | 2. | Outline and Features | 3 | | 2.1. | Precaution | | | | 1 Today Control | | | 3. | Panel | 4 | | 3.1. | Installing the option | | | 0 | g and option | | | 4. | Function | 6 | | 4.1. | | | | 4.1 | · · · · · · · · · · · · · · · · · · · | | | 4.1 | | | | 4.2. | Communication Command | | | 4.2 | | | | 4.2 | <del>_</del> | | | 4.3. | Timing Chart | | | 4.3 | | | | 4.3 | <u> </u> | | | 4.3. | | | | 4.3 | · · | | | 4.3 | | | | 4.3 | | | | 4.3 | • | | | 4.3 | <b>3</b> - | | | 4.0 | Life detection rag | | | 5. | Maintenance | 18 | | 5.1. | | | | | .1. Operation and Dispaly | _ | ## 1. Compliance #### 1.1.1. Compliance with FCC rules Please note that this equipment generates, uses and can radiate radio frequency energy. This equipment has been tested and has been found to comply with the limits of a Class a computing device pursuant to Subpart J of Part 15 of FCC rules. These rules are designed to provide reasonable protection against interference when this equipment is operated in a commercial environment. If this unit is operated in a residential area it may cause some interference and under these circumstances the user would be required to take, at his own expense, whatever measures are necessary to eliminate the interference. (FCC = Federal Communications Commission in the U.S.A.) #### 1.1.2. Compliance with European Directive This appliance complies with the statutory EMC (Electromagnetic Compatibility) directive 89/336/EEC and the Low Voltage Directive 73/23/EEC for safety of electrical equipment designed for certain voltages. Note: The displayed value may be adversely affected under extreme electromagnetic influences. Page 2 AD-4402-20 ## **2.** Outline and Features □ The CC link (Control & Communication link) is used to connect devices of the factory automation and control it by the master unit. Refer to CC-link information of the partner vender regarding the detail of this open system and each device. The AD-4402 OP-20 is the **remote device station** of the CC link interface version 1.10. - □ It is easy to make the program to control the AD-4402 because the option can control the indicator with the remote I/O and remote registors or communication command. - □ The system communication only uses a shield cable (twisted-pair and three wires) basically. #### 2.1. Precaution Befor any use, confirm the following articles for the safty operation. - CC-link connection Accord with the specification of the CC link version 1.10. - Grounding the option Ground the option certainly. - Wiring the cable Separate wires from other wires like a motor, inverter or a power source. Unless the CC-link wires is separated, it may cause to receive an electric shock, be happen operation error. - Test mode When using test mode of the indicator, remove CC-link connection to avoid misoperation. ## 3. Panel #### Station number switch Station number range: 1 to 61. Set a station number (address number) of CC-link. This option occupis four station number. Example: When the station number "1" is set, the "1", "2", "3" and "4" are occupied. Avoid any overlapped station number. #### Baud rate switch | Switch No. | Baud rate | |------------|-----------| | 0 | 156 kbps | | 1 | 625 kbps | | 2 | 2.5 Mbps | | 3 | 5 Mbps | | 4 | 10 Mbps | #### Status LED | Name | Lighting | Off | Blinking | |------|-------------------------------------------------|------------------------|--------------------| | RUN | Normal | Resetting<br>No signal | | | SD | Transmitting | | | | RD | Receiving | | | | ERR | Parameter error<br>CRC error<br>Station trouble | Normal | Changing parameter | ## 3.1. Installing the option #### **Caution** - Remove the power cord before installing the option. - Do not touch an inside parts within ten seconds after removing the power cord because you may receive an electric shock. - Do not forget to tighten the screw. If the screw is not tightened, it may cause short circuit or an error due to noise. - Three option boards can install in the slots. - Initialize the RAM data in accordance with proper procedure. Refer to the instruction manual of AD-4402 for other information. ## 4. Function - □ The installed option can read a weighing data of AD-4402 and write parameters to control it from the master station (EX:program controller of CC-link). - □ There are two ways to operate the option. - □ The direct operation of the remote input and remote output with remote registor. - □ The communication command operation. ## 4.1. Remote I/O and Remote Registor #### 4.1.1. Address Map of Remote Registor Assumed that station No. is "1". Remote Registor for AD-4402 to Master Unit #### Caution - □ Do not write any parameter to address "Not used" of the remote output RY and remote registor RWw. it may cause error and mis-operation. - □ The address "Not used" of the remote input RX and remote registor RWr are variable. | Station No. | Remote registor | Buffer | Description | | |-------------|-----------------|--------|----------------------------------------------------------------------------------------------------|--| | | RWr000 | 2E0 | Nat | | | 4 | RWr001 | 2E1 | Net | | | 1 | RWr002 | 2E2 | Cross | | | | RWr003 | 2E3 | Gross | | | | RWr004 | 2E4 | Total weight | | | | RWr005 | 2E5 | Total weight | | | 2 | RWr006 | 2E6 | Kind of error 0: No alarm, no error 1: Weighing sequence error 2: Zero error 3: Alarm 1 4: Alarm 2 | | | | RWr007 | 2E7 | Error No. | | | | RWr008 | 2E8 | 8 bits current material code | | | 3 | RWr009 | 2E9 | | | | 3 | RWr00A | 2EA | Not used | | | | RWr00B | 2EB | | | | | RWr00C | 2EC | Command data roply 32 hits | | | 4 | RWr00D | 2ED | Command data reply 32 bits, | | | 4 | RWr00E | 2EE | Command code reply 16 bits, | | | | RWr00F | 2EF | Not used | | Page 6 AD-4402-20 #### Master Unit to AD-4402 | Station No. | Remote registor | Buffer | Descript | ion | |-------------|-----------------|--------|-------------------------|---------| | | RWw000 | 1E0 | Final, | 24 bits | | 1 | RWw001 | 1E1 | Material code to store, | 8 bits | | 1 | RWw002 | 1E2 | Ontional proliminary | 22 hita | | | RWw003 | 1E3 | Optional preliminary | 32 bits | | | RWw004 | 1E4 | Preliminary | 16 bits | | 2 | RWw005 | 1E5 | Free fall | 16 bits | | 2 | RWw006 | 1E6 | Over | 16 bits | | | RWw007 | 1E7 | Under | 16 bits | | | RWw008 | 1E8 | Full | 32 bits | | 2 | RWw009 | 1E9 | ruii | 32 DIIS | | 3 | RWw00A | 1EA | Zara hand | 16 bits | | | RWw00B | 1EB | Zero band | | | | RWw00C | 1EC | Command data | 22 hita | | 4 | RWw00D | 1ED | Command data | 32 bits | | 4 | RWw00E | 1EE | Command code | 16 bits | | | RWw00F | 1EF | Not used | | Example of Numerical Number | Desimal numbers | Hexadecimal numbers | | | | |-----------------|---------------------|---------|----------|--| | Decimal numbers | 16 bits | 24 bits | 32 bits | | | -10 | FFF6 | FFFFF6 | FFFFFF6 | | | -1 | FFFF | FFFFF | FFFFFFF | | | 0 | 0000 | 000000 | 00000000 | | | 1 | 0001 | 000001 | 0000001 | | | 10 | 000A | 00000A | A000000 | | ## 4.1.2. Address Map of Remote Input / Output Flags (bits) and CC-link handshake in the remote input, #### AD-4402 to Master Unit Assumed that station No. is "1". | 4402 to master unit | | | Assumed that station No. is "1". | |---------------------|-------------------------------------------------------------|--------|------------------------------------------------| | Station No. | Flags (bits)<br>and CC-link<br>Handshake of<br>Remote Input | Buffer | Description | | | RX0000 | | Reply flag to store setpoints | | | RX0001 | | Not used | | | RX0001 | | Command replay flag | | | RX0003 | | Read / Write replay flag | | | RX0003 | | Read / Write replay hag | | | RX0005 | | Not used | | | RX0006 | 0E0 | CPU normal operation | | | RX0007 | OLO | Not used | | | RX0007 | | Decimal point 2º | | | RX0009 | | Decimal point 2 <sup>1</sup> Three bits binary | | | RX000A | | Decimal point 2 <sup>2</sup> | | | RX000R to | | • | | | RX000F | | Not used | | | RX0010 | | Zero band | | 4 | RX0011 | | Full flow | | 1 | RX0012 | | Medium flow | | | RX0013 | | Dribble flow | | | RX0014 | | Over | | | RX0015 | | OK | | | RX0016 | | Under | | | RX0017 | | Stable | | | RX0018 | 0E1 | Batch finish | | | RX0019 | | Capacity exceeded | | | RX001A | | Hold | | | RX001B | | Full | | | RX001C | | Not used | | | RX001D | | Discharge | | | RX001E | | Weighing sequence error | | | RX001F | | Abnormal weighing without weighing | | | IXXVVII | | sequence error.(Zero error, Alarm 1, Alarm 2) | | | RX0020 | | Stable | | | RX0021 | | Zero band | | | RX0022 | | Full | | | RX0023 | | Full flow | | | RX0024 | | Medium flow | | 2 | RX0025 | 0E2 | Dribble flow | | | RX0026 | | Over | | | RX0027 | | OK | | | RX0028 | | Under weight | | | RX0029 | | Internal reservation | | | RX002A | | internal reconvention | | Station No. | Flags (bits)<br>and CC-link<br>Handshake of<br>Remote Input | Buffer | Description | |-------------|-------------------------------------------------------------|--------|------------------------------| | | RX002B | | Mixture | | | RX002C | | Discharge | | | RX002D | 0E2 | Batch finish | | | RX002E | - | Recipe finish | | | RX002F | - | Discharge finish | | | RX0030 | | Mixture finish | | | RX0031 | | Nozzle down | | | RX0032 | - | Online | | | RX0033 | - | Weighing sequence in process | | | RX0034 | - | Input acknowledged | | 2 | RX0035 | - | Weighing sequence error | | | RX0036 | | Alarm 1 | | | RX0037 | 050 | Alarm 2 | | | RX0038 | 0E3 | Zero error | | | RX0039 | | Capacity exceeded | | | RX003A | | Buzzer | | | RX003B | | Tare | | | RX003C | | Center of zero | | | RX003D | | Gross display | | | RX003E | | Net display | | | RX003F | | Hold | | | RX0040 | | Material hopper 1 | | | RX0041 | | Material hopper 2 | | | RX0042 | | Material hopper 3 | | | RX0043 | | Material hopper 4 | | | RX0044 | | Material hopper 5 | | | RX0045 | | Material hopper 6 | | | RX0046 | | Material hopper 7 | | | RX0047 | 054 | Material hopper 8 | | | RX0048 | 0E4 | Material hopper 9 | | | RX0049 | | Material hopper 10 | | 0 | RX004A | | Material hopper 11 | | 3 | RX004B | | Material hopper 12 | | | RX004C | | Material hopper 13 | | | RX004D | | Material hopper 14 | | | RX004E | ] | Material hopper 15 | | | RX004F | | Material hopper 16 | | | RX0050 | | Material hopper 17 | | | RX0051 | | Material hopper 18 | | | RX0052 | 055 | Material hopper 19 | | | RX0053 | 0E5 | Material hopper 20 | | | RX0054 to | 1 | Not used | | | RX005F | | INOL USEU | | Station No. | Flags (bits)<br>and CC-link<br>Handshake of<br>Remote Input | Buffer | Description | |-------------|-------------------------------------------------------------|--------|------------------------------------| | | RX0060 to<br>RX006F | 0E6 | Not used | | | RX0070 to<br>RX0077 | | Not used | | 4 | RX0078 | | Request flag of initialization | | 4 | RX0079 | 0E7 | Reply flag of initial data setting | | | RX007A | UE7 | Error status flag | | | RX007B | | Remote READY flag | | | RX007C to<br>RX007F | | Not used | ## Flags (bits) and CC-link handshake in the remote output, ## Master Unit to AD-4402 | er Unit to AD-4402 | | | Assumed that station No. is "1". | |--------------------|-------------------------------------------------------------|--------|---------------------------------------------| | Station No. | Flags (bits)<br>and CC-link<br>Handshake of<br>Remote Input | Buffer | Description | | | RY0000 | | Request flag to store setpoints | | | RY0001 | | Not used | | | RY0002 | 160 | Command request flag | | | RY0003 | 100 | Read/Write selection flag | | | RY0004 to<br>RY000F | | Not used | | | RY0010 | | Zero | | | RY0011 | | Zero clear | | | RY0012 | | Tare | | 1 | RY0013 | | Tare clear | | | RY0014 | 161 | Hold | | | RY0015 | | Net display | | | RY0016 | | Gross display | | | RY0017 | | Not used | | | RY0018 | | Total command | | | RY0019 | | Total clear(Current material code) | | | RY001A | | Reset error. (Zero error, Alarm 1, Alarm 2) | | | RY001B to | | Not used | | | RY001F | | | | | RY0020 | | Zero | | | RY0021 | | Zero clear | | | RY0022 | | Tare | | 2 | RY0023 | 162 | Tare clear | | | RY0024 | | Batch start | | | RY0025 | | Recipe start | | | RY0026 | | Discharge start | | | RY0027 | | Mixture start | | | Flags (bits) | | | | |-------------|---------------------|--------------|------------------------------------------------------------------------------|--| | Station No. | and CC-link | | Description | | | | Handshake of | Buffer | | | | | Remote Input | | | | | | RY0028 | | Internal reservation | | | | RY0029 | | Manual free fall compensation | | | | RY002A | | Total command | | | | RY002B | | Cancel the last total | | | | RY002C | 162 | Emergency stop | | | | RY002D | 102 | Clear total of each material code that specified | | | | 10020 | | at the storing command No.33. | | | | RY002E | | Clear total of each recipe code that specified at the storing command No.57. | | | | RY002F | | Not used | | | 2 | RY0030 to | | Natural | | | | RY0034 | | Not used | | | | RY0035 | | Pause | | | | RY0036 | | Re-start | | | | RY0037 | 163 | Clear total of current material code | | | | RY0038 | 103 | Clear all totals of material code | | | | RY0039 | | Clear total of current recipe code | | | | RY003A | | Clear all totals of recipe code | | | | RY003B to | | Not used | | | | RY003F | | Not useu | | | | RY0040 | | | | | | RY0041 | | Not used | | | | RY0042 | | | | | | RY0043 | | Force batch finish | | | | RY0044 | | Force recipe finish | | | | RY0045 | 404 | Force discharge finish | | | | RY0046 to<br>RY004A | 164 | Not used | | | 3 | RY004B | | Error reset | | | | RY004C | | Not used | | | | RY004D | | Not used | | | | RY004E | | Manual print | | | | RY004F | | Not used | | | | RY0050 | | Gross display | | | | RY0051 | 165 | Net display | | | | RY0052 to | | Not used | | | | RY005F | | | | | | RY0060 to | 166 Not used | Not used | | | | RY006F | | | | | | RY0070 to<br>RY0077 | | Not used | | | 4 | RY0077 | 167 | Reply flag of initialization | | | 4 | RY0079 | | Request flag of initial data setting | | | | RY0079 | | Request flag of error reset | | | | RY007A<br>RY007B to | - | | | | | RY007F | | Not used | | | | 1110071 | | | | ## **4.2. Communication Command** #### 4.2.1. Reading command | | Command code | | |-----------------------------------------|--------------|-----------------------------------------------------| | Command name | at RWw000E | Description | | Material name 1 (character no. 1 to 4) | 1 | | | Material name 2 (character no. 5 to 8) | 2 | | | Material name 3 (character no. 9 to 12) | 3 | | | Material hopper | 5 | | | Full | 6 | | | Free fall | 7 | | | Preliminary | 8 | | | Optional preliminary | 9 | The command for material code. | | Over | 10 | | | Under | 11 | | | Zero band | 12 | Select material code before | | Full | 13 | calling the code. | | Tare | 14 | Set the code number using | | Supplementary flow open timer | 15 | "writing command code 33" | | Supplementary flow close timer | 16 | | | Automatic free fall range | 17 | | | Initial dribble flow | 18 | | | Initial medium flow | 19 | | | Total weight | 20 | | | Total count | 21 | | | Current material code | 32 | | | Material code to store | 33 | | | Weighing result | 36 | To read the last result. | | Recipe name 1 (character no. 1 to 4) | 40 | | | Recipe name 2 (character no. 5 to 8) | 41 | | | Recipe name 3 (character no. 9 to 12) | 42 | | | Material 1 | 44 | | | Material 2 | 45 | The command for recipe code. | | Material 3 | 46 | | | Material 4 | 47 | | | Material 5 | 48 | Select recipe code before calling | | Material 6 | 49 | the code. | | Material 7 | 50 | Set the code number using "writing command code 57" | | Material 8 | 51 | | | Material 9 | 52 | | | Material 10 | 53 | | | Total weight | 54 | | | Total count | 55 | | | Current recipe code | 56 | | | Recipe code to store | 57 | | ## 4.2.2. Storing command | | | Data of | | |-----------------------------------------|-------------------------|------------|--------------------------------------------------------------| | Command name | Command code at RWw000E | RWw000C, | Description | | Command name | | RWw000D | Description | | Material name 1 (character no. 1 to 4) | 1 | KWW000D | | | Material name 2 (character no. 5 to 8) | 2 | Characters | | | Material name 3 (character no. 9 to 12) | 3 | Onaraotors | | | Material hopper | 5 | | The command for material code. | | Full | 6 | | | | Free fall | 7 | | | | Preliminary | 8 | | | | Optional preliminary | 9 | | Select material | | Over | 10 | | code before calling | | Under | 11 | | the code. | | Zero band | 12 | Value | Set the code | | Full | 13 | Value | number using | | Tare | 14 | | "writing command | | Supplementary flow open timer | 15 | | code 33" | | Supplementary flow close timer | 16 | | | | Automatic free fall range | 17 | | | | Initial dribble flow | 18 | | | | Initial medium flow | 19 | | | | Recall material code | 32 | 0.45.00 | | | Material code to store | 33 | 0 to 99 | | | Recipe name 1 (character no. 1 to 4) | 40 | | | | Recipe name 2 (character no. 5 to 8) | 41 | Characters | The command for | | Recipe name 3 (character no. 9 to 12) | 42 | | | | Material 1 | 44 | | recipe code. | | Material 2 | 45 | | Select recipe code before calling the | | Material 3 | 46 | | | | Material 4 | 47 | | | | Material 5 | 48 | Value | code. | | Material 6 | 49 | | Set the code<br>number using<br>"writing command<br>code 57" | | Material 7 | 50 | | | | Material 8 | 51 | | | | Material 9 | 52 | | 3343 01 | | Material 10 | 53 | | | | Recall recipe code | 56 | 0 to 99 | | | Recipe code to store | e code to store 57 | | | #### **Caution** Use ASCII code. Put a space code (20h) in material name or recipe name, when they is not used. | Command name | Command code at RWw000E | Data of<br>RWw000C,<br>RWw000D | Description | |-------------------------------------------------|-------------------------|--------------------------------|-------------------------------------------------------| | Zero | 0 | 1 | | | Zero clear | 0 | 2 | | | Tare | 0 | 3 | | | Tare clear | 0 | 4 | | | Batch start | 0 | 5 | | | Recipe start | 0 | 6 | | | Discharge start | 0 | 7 | | | Mixture start | 0 | 8 | | | Manual free fall compensation | 0 | 10 | | | Total | 0 | 11 | | | Cancel the last result | 0 | 12 | | | Emergency stop | 0 | 13 | | | Clear total of each material code | 0 | 14 | Set material code at storing command No.33 before use | | Clear total of each recipe code | 0 | 15 | Set recipe code at storing command No.57 before use | | Pause | 0 | 22 | | | Re-start | 0 | 23 | | | Clear accumulation data of active material code | 0 | 24 | | | Clear all totals of material code | 0 | 25 | | | Clear total of active recipe code | 0 | 26 | | | Clear all totals of recipe code | 0 | 27 | | | Forced batch finish | 0 | 36 | | | Forced recipe finish | 0 | 37 | | | Forced discharge finish | 0 | 38 | | | Reset error | 0 | 44 | | | Manual print command | 0 | 47 | | | Net display | 0 | 49 | | | Gross display | 0 | 50 | | #### 4.3. Timing Chart ### 4.3.1. When Turning on the Indicator - □ When initializing the interface form the indicator, use the following procedure. When initializing the interface form the master unit, refer to "4.3.3.Requesting to initialize the interface from the Master Unit". - □ When turning on the indicator each time, the following procedure is preformed to initialize the option interface. - 1 When turning on the indicator and the option interface is the status to be able to communicate, the **request flag of initialization** (RX0078) is active in AD-4402 side. - 2 The master unit initializes the option interface and turn on the **reply flag of initialization** (RY0078). - 3 AD-4402 turns off the **request flag of initialization** (RX0078) and turn on the **remote READY flag** (RX007B) - 4 Turn off the **reply flag of initialization** (RY0078) in the master unit side. #### 4.3.2. Resumption form suspended mode □ The calibration mode, function list mode and standby mode are turn off the **remote READY flag** (RX007B). When resuming form suspended mode, set the flag on the same procedure of "4.3.1. When Turning on the Indicator". #### 4.3.3. Requesting to initialize the interface from the Master Unit - □ When initializing the interface form the master unit, use the following procedure. When initializing the interface form the indicator, refer to "4.3.1. When Turning on the Indicator". - 1 When requesting initial setting of the option interface from the master unit, turn on the request flag of initial data setting (RY0079) during turning on the remote READY flag (RX007B). - 2 AD-4402 turns off the **remote ready flag** (RX007B) and initializes it. - 3 The **reply flag of initial data setting** (RX0079) is turned on. - 4 Turn off the **request flag of initial data setting** (RY0079) in the master side. - 5 AD-4402 turns on the **remote READY flag** (RX007B). #### 4.3.4. Storing Setpoints - This command can store setpoints with referring the remote registor (RWw0000 to RWw000B). - 1 Set a **material code** to upper side 8 bits of the **remote registor** (RWw0001) that is in hexadecimal numbers. - 2 Set zero to the parameter that is not used. - 3 Turn on the **request flag** (RY0000) after storing parameters of the **remote registor** (RWw0000 to RWw000B) to the indicator. - 4 When the **replay flag** (RX0000) is turned on, the **request flag** (RY0000) is tuned off. #### Master Unit to AD-4402 | a <u>ster Unit i</u> | 10 AD-4402 | | | | | |----------------------|------------------------|-------------|-------------------------|---------|--| | Station | Remote | Buffer | Description | | | | No. | registor | Dullei | Description | | | | | RWr000 | 1E0 | Final, | 24 bits | | | 4 | RWr001 | 1E1 | Material code to store, | 8 bits | | | 1 | RWr002 | 1E2 | Ontional proliminary | 22 bita | | | | RWr003 | 1E3 | E3 Optional preliminary | 32 bits | | | | RWr000 1E4 Preliminary | Preliminary | 16 bits | | | | | RWr001 | 1E5 | Free fall | 16 bits | | | <del> </del> | RWr002 | 1E6 | Over | 16 bits | | | | RWr003 | 1E7 | Under | 16 bits | | | | RWr000 1E8 | FII | 00 hita | | | | 3 | RWr001 | 1E9 | Full | 32 bits | | | | RWr002 | 1EA | 7 | 40136 | | | | RWr003 | 1EB | Zero band | 16 bits | | Setpoints Setpoints (RWw0000 to RWw000B) Request flag to store setpoint (RY0000) Reply flag to store setpoints (RX0000) #### 4.3.5. Reading command - 1 Set a material code (No. 33) or recipe code (No. 57) in the **storing command** (RWw000E). - 2 Turn on the **Read/Write selection** (RY0003). - 3 Set the kind of data to the **command code** (RWw000E) - 4 The result is output to the **reply registor** (RWr000C to 000D). #### 4.3.6. Storing command - 1 Set a material code (No. 33) or recipe code (No. 57) in the **storing command** (RWw000E). - 2 Turn off the Read/Write selection (RY0003). - 3 Set the kind of data to the **command code** (RWw000E) - 4 Set data to the **command registor** (RWw000C, RWw000D). Step 2 #### 4.3.7. CPU Signal □ When the AD-4402 indicator is normal status, the **CPU normal operation flag** registor (RX0006) outputs the following signal. CPU normal operation flag (RX0006) ## 4.3.8. Error detection Flag - 1 When an error is detected, the **remote READY flag** (RX007B) is turned off and turned on the **error status flag** (RX007A) to inform the error. - 2 The master unit requests to reset the error with the error reset request flag (RY007A). ## 5. Maintenance #### 5.1. Monitor mode The monitor mode is used to check the indicator during the weighing sequence. #### 5.1.1. Operation and Dispaly To enter the maintenance Press and hold the **ENTER** key and press the **\*** key in weighing mode. Select menu check using the the key and the **ENTER** key. Select menu Option and OP-20 in the slot. To select a kind of data of RX, RY, RWr, RWw The ▲ key or ▼ key To select an I/O No. or registor No. The **\( \dagger** \), **\( \Lambda \)** key or **\( \Varphi \)** key To exit the mode (To return to weighing mode) The **ESC** key. ## **MEMO** ## **MEMO** #### A&D Company, Limited 3-23-14 Higashi-Ikebukuro, Toshima-ku, Tokyo 170-0013 JAPAN Telephone: [81] (3) 5391-6132 Fax: [81] (3) 5391-6148 #### **A&D ENGINEERING, INC.** 1555, McCandless Drive, Milpitas, CA. 95035 U.S.A. Telephone: [1] (408) 263-5333 Fax: [1] (408)263-0119 #### **A&D INSTRUMENTS LTD.** Unit 24/26 Blacklands Way, Abingdon Business Park, Abingdon, Oxon OX14 1DY United Kingdom Telephone: [44] (1235) 550420 Fax: [44] (1235) 550485 #### <German Scales Office> Berner Straße 64, 60437 Frankfurt/Main 50 GERMANY Telephone: [49] (69) 507-1017 Fax: [49] (69) 507-2054 #### **A&D MERCURY PTY. LTD.** 32 Dew Street, Thebarton, South Australia 5031 AUSTRALIA Telephone: [61] (8) 8352-3033 Fax: [61] (8) 8352-7409 #### **A&D KOREA Limited** 8th Floor, Manhattan Bldg. 36-2 Yoido-dong, Youngdeungpo-ku, Seoul, KOREA Telephone: [82] (2) 780-4101 Fax: [82] (2) 782-4280